Distributed Localization Via Barycentric Coordinates: Finite-Time Convergence*

Abstract We consider distributed localization in a sensor network in R 2 from inter-agent distances. Sensors and anchors exchange data with their neighbors. No centralized data processing is required. We establish a differential equation for the unknown sensor positions, and show that the estimated positions of sensors converge to their actual values in finite time (assuming noise-free measurements). The key assumption is that all sensors are in the convex hull of three or more anchors. The proposed localization method uses the barycentric coordinates of each sensor with respect to some of its neighbors (which may not include those anchors), assuming the sensor falls in the convex hull of these neighbors.

[1]  Ivan Stojmenovic,et al.  Handbook of Sensor Networks: Algorithms and Architectures , 2005, Handbook of Sensor Networks.

[2]  Alfred O. Hero,et al.  Distributed weighted-multidimensional scaling for node localization in sensor networks , 2006, TOSN.

[3]  Brian D. O. Anderson,et al.  Rigidity, computation, and randomization in network localization , 2004, IEEE INFOCOM 2004.

[4]  Soummya Kar,et al.  Distributed Sensor Localization in Random Environments Using Minimal Number of Anchor Nodes , 2008, IEEE Transactions on Signal Processing.

[5]  Ying Zhang,et al.  Localization from mere connectivity , 2003, MobiHoc '03.

[6]  H. Wolkowicz,et al.  Sensor Network Localization, Euclidean Distance Matrix completions, and graph realization , 2006, MELT '08.

[7]  M J Sippl,et al.  Cayley-Menger coordinates. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Brian D. O. Anderson,et al.  Linear Optimal Control , 1971 .

[9]  Jian Li,et al.  Exact and Approximate Solutions of Source Localization Problems , 2008, IEEE Transactions on Signal Processing.

[10]  Brian D. O. Anderson,et al.  Polynomial methods in noisy network localization , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[11]  Michael A. Saunders,et al.  SpaseLoc: An Adaptive Subproblem Algorithm for Scalable Wireless Sensor Network Localization , 2006, SIAM J. Optim..

[12]  Brian D. O. Anderson,et al.  Sequential Localization of Sensor Networks , 2009, SIAM J. Control. Optim..

[13]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[14]  Brian D. O. Anderson,et al.  Formal Theory of Noisy Sensor Network Localization , 2010, SIAM J. Discret. Math..

[15]  Jie Gao,et al.  Localization and routing in sensor networks by local angle information , 2005, MobiHoc '05.

[16]  Jiawang Nie,et al.  Sum of squares method for sensor network localization , 2006, Comput. Optim. Appl..

[17]  Ziyang Meng,et al.  Decentralized finite-time sliding mode estimators with applications to formation tracking , 2010, Proceedings of the 2010 American Control Conference.

[18]  Brian D. O. Anderson,et al.  On the Use of Convex Optimization in Sensor Network Localization and Synchronization , 2009 .

[19]  David C. Moore,et al.  Robust distributed network localization with noisy range measurements , 2004, SenSys '04.

[20]  Brian D. O. Anderson,et al.  A Theory of Network Localization , 2006, IEEE Transactions on Mobile Computing.

[21]  Jie Gao,et al.  Connectivity-Based Localization of Large Scale Sensor Networks with Complex Shape , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[22]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[23]  Brian D. O. Anderson,et al.  Graphical properties of easily localizable sensor networks , 2009, Wirel. Networks.

[24]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..