Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: a critical assessment.

The search for biomarkers in biological fluids that can be used for disease diagnosis and prognosis using mass spectrometry has emerged to become a state-of-the-art methodology for clinical proteomics. Poor cross platform comparison of the findings, however, makes the need for comparison studies probably as urgent as the need for new ones. It is now increasingly recognized that standardized statistical and bioinformatics approaches during data processing are of utmost importance for such comparisons. This paper reviews two of the currently most promising methods, namely LC-MS and CE-MS techniques, and software tools used to analyze the huge amount of data they generate. We further review the statistical issues of feature selection and sample classification.

[1]  Jennifer Listgarten,et al.  Practical proteomic biomarker discovery: taking a step back to leap forward. , 2005, Drug discovery today.

[2]  D. Edwards,et al.  Statistical Analysis of Gene Expression Microarray Data , 2003 .

[3]  S. Dudoit,et al.  Multiple Testing Procedures with Applications to Genomics , 2007 .

[4]  G. Anderson,et al.  Probing proteomes using capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. , 1999, Analytical chemistry.

[5]  David Ward,et al.  Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data , 2003, Bioinform..

[6]  Harald Mischak,et al.  Advances in urinary proteome analysis and biomarker discovery. , 2007, Journal of the American Society of Nephrology : JASN.

[7]  Yoav Freund,et al.  An Adaptive Version of the Boost by Majority Algorithm , 1999, COLT '99.

[8]  Pei Wang,et al.  Bioinformatics Original Paper a Suite of Algorithms for the Comprehensive Analysis of Complex Protein Mixtures Using High-resolution Lc-ms , 2022 .

[9]  Peng Xiao,et al.  Hotelling’s T 2 multivariate profiling for detecting differential expression in microarrays , 2005 .

[10]  Chris F. Taylor,et al.  A common open representation of mass spectrometry data and its application to proteomics research , 2004, Nature Biotechnology.

[11]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[12]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[13]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[14]  Blaz Zupan,et al.  Orange: From Experimental Machine Learning to Interactive Data Mining , 2004, PKDD.

[15]  V. Kašička Recent developments in CE and CEC of peptides , 2007, Electrophoresis.

[16]  Jeffrey S. Morris,et al.  Serum proteomics profiling—a young technology begins to mature , 2005, Nature Biotechnology.

[17]  Masoud Nikravesh,et al.  Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) , 2006 .

[18]  V. Dolnik Capillary electrophoresis of proteins 2005–2007 , 2008, Electrophoresis.

[19]  G. D. de Jong,et al.  Capillary electrophoresis-mass spectrometry for the analysis of intact proteins. , 2007, Journal of chromatography. A.

[20]  E. Diamandis Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. , 2004, Journal of the National Cancer Institute.

[21]  H. Mischak,et al.  Biomarker discovery by CE‐MS enables sequence analysis via MS/MS with platform‐independent separation , 2006, Electrophoresis.

[22]  H. Mischak,et al.  Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis , 2006, Nature Medicine.

[23]  E. Petricoin,et al.  Use of proteomic patterns in serum to identify ovarian cancer , 2002, The Lancet.

[24]  Jeffrey S. Morris,et al.  Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments , 2004, Bioinform..

[25]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[26]  Daniel W Chan,et al.  The clinical application of proteomics. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[27]  Edward R. Dougherty,et al.  Is cross-validation valid for small-sample microarray classification? , 2004, Bioinform..

[28]  Richard D. Smith,et al.  Advances in proteomics data analysis and display using an accurate mass and time tag approach. , 2006, Mass spectrometry reviews.

[29]  P. Schmitt‐Kopplin,et al.  Trends in CE‐MS 2005–2006 , 2008, Electrophoresis.

[30]  E. J. Song,et al.  CE at the omics level: Towards systems biology – An update , 2008, Electrophoresis.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[33]  Lennart Martens,et al.  The minimum information about a proteomics experiment (MIAPE) , 2007, Nature Biotechnology.

[34]  J. Lewis,et al.  Statistical principles for clinical trials (ICH E9): an introductory note on an international guideline. , 1999, Statistics in medicine.

[35]  A. Cifuentes,et al.  Sample treatments prior to capillary electrophoresis-mass spectrometry. , 2007, Journal of chromatography. A.

[36]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[37]  G. D. de Jong,et al.  On‐line coupling of SPE and CE‐MS for peptide analysis , 2007, Electrophoresis.

[38]  W. Kolch,et al.  Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. , 2005, Mass spectrometry reviews.

[39]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[40]  Bart J. A. Mertens,et al.  Mass Spectrometry Proteomic Diagnosis: Enacting the Double Cross-Validatory Paradigm , 2006, J. Comput. Biol..

[41]  Rong Wang,et al.  The need for a public proteomics repository , 2004, Nature Biotechnology.

[42]  D. Ransohoff Lessons from controversy: ovarian cancer screening and serum proteomics. , 2005, Journal of the National Cancer Institute.

[43]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[44]  Erika Check,et al.  Proteomics and cancer: Running before we can walk? , 2004, Nature.

[45]  A. Ganser,et al.  Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. , 2007, Blood.

[46]  E. Diamandis Point: Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? , 2003, Clinical chemistry.

[47]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..