Targeted spatial sampling using GOANNA improves detection of visual field progression

A new automated visual field testing approach that samples scotoma edges at a finer spatial resolution, GOANNA (Gradient‐Oriented Automated Natural Neighbour Approach) was previously shown to improve accuracy and precision around those regions compared to current procedures in computer simulation. The purpose of this study was to observe if this improvement translated to more accurate classification of glaucomatous progression.

[1]  J. Caprioli,et al.  Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[2]  H Haeberlin,et al.  Adaptive programs for analysis of the visual field by automatic perimetry — Basic problems and solutions , 2004, Documenta Ophthalmologica.

[3]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[4]  F W Fitzke,et al.  Glaucoma surgery with or without adjunctive antiproliferatives in normal tension glaucoma: 2 Visual field progression. , 2002, The British journal of ophthalmology.

[5]  M. Wall,et al.  Effect of instructions on conventional automated perimetry. , 2000, Investigative ophthalmology & visual science.

[6]  J. Weber,et al.  What is the most suitable grid for computer perimetry in glaucoma patients? , 1986, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[7]  P. Artes,et al.  Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. , 2000, Investigative ophthalmology & visual science.

[8]  Y. Aoyama,et al.  A method to measure visual field sensitivity at the edges of glaucomatous scotomata. , 2014, Investigative ophthalmology & visual science.

[9]  Andrew Turpin,et al.  Customized, automated stimulus location choice for assessment of visual field defects. , 2014, Investigative ophthalmology & visual science.

[10]  J. Stürmer,et al.  What do glaucomatous visual fields really look like in fine-grid computerized profile perimetry? , 1985, Developments in ophthalmology.

[11]  J. Katz,et al.  Analysis of progressive change in automated visual fields in glaucoma. , 1996, Investigative ophthalmology & visual science.

[12]  F. Fitzke,et al.  Effect of surgery on visual field progression in normal-tension glaucoma. , 1997, Ophthalmology.

[13]  J. Diamond,et al.  Effect of a patient training video on visual field test reliability , 2003, The British journal of ophthalmology.

[14]  Chris A. Johnson,et al.  Comparison of different methods for detecting glaucomatous visual field progression. , 2003, Investigative ophthalmology & visual science.

[15]  D B Henson,et al.  Visual field test simulation and error in threshold estimation. , 1996, The British journal of ophthalmology.

[16]  Chris A Johnson,et al.  Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. , 2002, Investigative ophthalmology & visual science.

[17]  F W Fitzke,et al.  Use of high spatial resolution perimetry to identify scotomata not apparent with conventional perimetry in the nasal field of glaucomatous subjects , 2002, The British journal of ophthalmology.

[18]  Chris A. Johnson,et al.  Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. , 2003, Investigative ophthalmology & visual science.

[19]  R. A. Hitchings,et al.  Modelling series of visual fields to detect progression in normal-tension glaucoma , 1995, Graefe's Archive for Clinical and Experimental Ophthalmology.

[20]  C A Johnson,et al.  Properties of staircase procedures for estimating thresholds in automated perimetry. , 1992, Investigative ophthalmology & visual science.

[21]  Chris A Johnson,et al.  Classification of visual field abnormalities in the ocular hypertension treatment study. , 2000, Archives of ophthalmology.

[22]  M. Weitzman,et al.  Comparison between Tendency-Oriented Perimetry (TOP) and octopus threshold perimetry. , 2000, Ophthalmology.

[23]  A J Vingrys,et al.  A new look at threshold estimation algorithms for automated static perimetry. , 1999, Optometry and vision science : official publication of the American Academy of Optometry.

[24]  Chris A Johnson,et al.  Baseline visual field characteristics in the ocular hypertension treatment study. , 2002, Ophthalmology.

[25]  M. Schwartz,et al.  Self-destructive and self-protective processes in the damaged optic nerve: implications for glaucoma. , 2000, Investigative ophthalmology & visual science.

[26]  Robert N Weinreb,et al.  Patterns of glaucomatous visual field progression identified by three progression criteria. , 2004, American journal of ophthalmology.

[27]  H. Rootzén,et al.  A new generation of algorithms for computerized threshold perimetry, SITA. , 2009, Acta ophthalmologica Scandinavica.

[28]  Allison M McKendrick,et al.  Advantages of Terminating Zippy Estimation by Sequential Testing (ZEST) With Dynamic Criteria for White-on-White Perimetry , 2005, Optometry and vision science : official publication of the American Academy of Optometry.

[29]  Allison M McKendrick,et al.  Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma. , 2007, Investigative ophthalmology & visual science.

[30]  Ariel Linden Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. , 2006, Journal of evaluation in clinical practice.

[31]  F W Fitzke,et al.  Comparison of visual field progression in patients with normal pressure glaucoma between eyes with and without visual field loss that threatens fixation , 2000, The British journal of ophthalmology.

[32]  F W Fitzke,et al.  Early detection of visual field progression in glaucoma: a comparison of progressor and statpac 2 , 1997, The British journal of ophthalmology.

[33]  Chris A. Johnson,et al.  Refinement of pointwise linear regression criteria for determining glaucoma progression. , 2013, Investigative ophthalmology & visual science.

[34]  Pamela A. Sample,et al.  Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[35]  F. Fitzke,et al.  Analysis of visual field progression in glaucoma. , 1996, The British journal of ophthalmology.

[36]  Yuko Ohno,et al.  Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. , 2002, Investigative ophthalmology & visual science.

[37]  S. Gardiner,et al.  Examination of different pointwise linear regression methods for determining visual field progression. , 2002, Investigative ophthalmology & visual science.

[38]  P. Wishart,et al.  Determining progressive visual field loss in serial Humphrey visual fields. , 1995, Ophthalmology.

[39]  B. Bengtsson,et al.  A visual field index for calculation of glaucoma rate of progression. , 2008, American journal of ophthalmology.

[40]  C. Krakau,et al.  REGRESSION ANALYSIS OF THE CENTRAL VISUAL FIELD IN CHRONIC GLAUCOMA CASES , 1982, Acta ophthalmologica.

[41]  Michael Wall,et al.  Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. , 2009, Investigative ophthalmology & visual science.

[42]  David P Crabb,et al.  High spatial resolution automated perimetry in glaucoma , 1997, The British journal of ophthalmology.

[43]  J. Caprioli,et al.  Comparison of methods to detect visual field progression in glaucoma . , 1997, Ophthalmology.

[44]  F. Fitzke,et al.  How often do patients need visual field tests? , 1997, Graefe's Archive for Clinical and Experimental Ophthalmology.

[45]  Douglas R. Anderson Automated Static Perimetry , 1992 .

[46]  S M Drance,et al.  The mode of progression of visual field defects in glaucoma. , 1984, American journal of ophthalmology.

[47]  Pamela A Sample,et al.  Increased detection rate of glaucomatous visual field damage with locally condensed grids: a comparison between fundus-oriented perimetry and conventional visual field examination. , 2003, Archives of ophthalmology.

[48]  C. Johnson,et al.  Simulation of longitudinal threshold visual field data. , 2000, Investigative ophthalmology & visual science.

[49]  P. Hoyng,et al.  Rate of visual field loss in progressive glaucoma. , 2000, Archives of ophthalmology.

[50]  B. Bengtsson,et al.  Evaluation of a new threshold visual field strategy, SITA, in normal subjects. Swedish Interactive Thresholding Algorithm. , 1998, Acta ophthalmologica Scandinavica.

[51]  Jean Braun,et al.  A numerical method for solving partial differential equations on highly irregular evolving grids , 1995, Nature.

[52]  P. King-Smith,et al.  Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation , 1994, Vision Research.

[53]  A. Sommer,et al.  Estimating progression of visual field loss in glaucoma. , 1997, Ophthalmology.

[54]  J. Flanagan,et al.  Pointwise univariate linear regression of perimetric sensitivity against follow-up time in glaucoma. , 1997, Ophthalmology.

[55]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[56]  M Schulzer,et al.  Errors in the diagnosis of visual field progression in normal-tension glaucoma. , 1994, Ophthalmology.

[57]  B. Bengtsson,et al.  Evaluation of a new threshold visual field strategy, SITA (Swedish Interactive Test Algorithm), in normal subjects , 1998 .