Channel-forming activity of syringopeptin 25A in mercury-supported lipid bilayers with a phosphatidylcholine distal leaflet.

[1]  L. Becucci,et al.  What Ion Flow along Ion Channels Can Tell us about Their Functional Activity , 2016, Membranes.

[2]  L. Becucci,et al.  Can gramicidin ion channel affect the dipole potential of neighboring phospholipid headgroups? , 2015, Bioelectrochemistry.

[3]  A. Scaloni,et al.  Channel-forming activity of syringomycin E in two mercury-supported biomimetic membranes. , 2015, Biochimica et biophysica acta.

[4]  L. Becucci,et al.  Dermcidin, an anionic antimicrobial peptide: influence of lipid charge, pH and Zn2+ on its interaction with a biomimetic membrane. , 2014, Soft matter.

[5]  L. Becucci,et al.  Mercury-Supported Biomimetic Membranes for the Investigation of Antimicrobial Peptides , 2014, Pharmaceuticals.

[6]  Flavio Maran,et al.  Probing membrane permeabilization by the antibiotic lipopeptaibol trichogin GA IV in a tethered bilayer lipid membrane. , 2012, Biochimica et biophysica acta.

[7]  L. Torrance,et al.  Unusual Features of Pomoviral RNA Movement , 2011, Front. Microbio..

[8]  A. Scaloni,et al.  Probing membrane permeabilization by the antimicrobial peptide distinctin in mercury-supported biomimetic membranes. , 2011, Biochimica et biophysica acta.

[9]  S. Bezrukov,et al.  Fungicidal Activities and Mechanisms of Action of Pseudomonas syringae pv. syringae Lipodepsipeptide Syringopeptins 22A and 25A , 2011, Front. Microbio..

[10]  L. Becucci,et al.  Estimate of the potential difference across metal/water interfaces and across the lipid bilayer moiety of biomimetic membranes: an approach , 2011 .

[11]  L. Becucci,et al.  Equilibrium distribution of K+ ions in the hydrophilic spacer of tethered bilayer lipid membranes , 2009 .

[12]  D. Tieleman,et al.  Structure and dynamics of the antifungal molecules Syringotoxin-B and Syringopeptin-25A from molecular dynamics simulation , 2008, European Biophysics Journal.

[13]  L. Becucci,et al.  Gramicidin conducting dimers in lipid bilayers are stabilized by single-file ionic flux along them. , 2007, The journal of physical chemistry. B.

[14]  L. Becucci,et al.  Kinetics of channel formation in bilayer lipid membranes (BLMs) and tethered BLMs: monazomycin and melittin. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  J. Takemoto,et al.  Syringopeptin SP25A-mediated killing of gram-positive bacteria and the role of teichoic acid d-alanylation. , 2007, FEMS microbiology letters.

[16]  P. Rovero,et al.  Electrochemical investigation of melittin reconstituted into a mercury-supported lipid bilayer. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[17]  V. Fogliano,et al.  Novel Cyclic Lipodepsipeptide from Pseudomonas syringae pv. lachrymans Strain 508 and Syringopeptin Antimicrobial Activities , 2005, Antimicrobial Agents and Chemotherapy.

[18]  Wolfgang Knoll,et al.  Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. , 2003, Angewandte Chemie.

[19]  V. Fogliano,et al.  The Phytotoxic Lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv syringae Forms Ion Channels in Sugar Beet Vacuoles , 2002, The Journal of Membrane Biology.

[20]  P. Gurnev,et al.  Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. , 2000, Bioelectrochemistry.

[21]  A. Ballio,et al.  The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. , 1999, Molecular plant-microbe interactions : MPMI.

[22]  A. Ballio,et al.  Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. , 1999, Molecular plant-microbe interactions : MPMI.

[23]  J. Brand,et al.  Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. , 1998, Biophysical journal.

[24]  L. Becucci,et al.  A novel model of the hanging mercury drop electrode , 1997 .

[25]  D. Gross,et al.  Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. , 1997, Molecular plant-microbe interactions : MPMI.

[26]  A. Scaloni,et al.  Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25-A. Two-dimensional NMR, distance geometry and molecular dynamics. , 1995, European journal of biochemistry.

[27]  J. Nakayama,et al.  Structural analysis of new syringopeptins by tandem mass spectrometry. , 1995, Bioscience, biotechnology, and biochemistry.

[28]  D. D. Giorgio,et al.  Toxins of Pseudomonas syringae pv. syringae affect H+‐transport across the plasma membrane of maize , 1994 .

[29]  L. Becucci,et al.  The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes. , 1994, Biophysical journal.

[30]  M. Simmaco,et al.  Phytotoxic properties of Pseudomonas syringae pv. syringae toxins , 1992 .

[31]  F. Bossa,et al.  Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae , 1991, FEBS letters.

[32]  J. Koryta,et al.  Biophysical chemistry of membrane functions , 1988 .