A Dynamical Approach to Two-Block Separable Convex Optimization Problems with Linear Constraints
暂无分享,去创建一个
[1] H. Attouch,et al. Fast optimization via inertial dynamics with closed-loop damping , 2020, Journal of the European Mathematical Society.
[2] E. R. Csetnek. Continuous Dynamics Related to Monotone Inclusions and Non-Smooth Optimization Problems , 2020, 2007.00460.
[3] Hedy Attouch. Fast inertial proximal ADMM algorithms for convex structured optimization with linear constraint , 2020 .
[4] Radu Ioan Bot,et al. Fixing and extending some recent results on the ADMM algorithm , 2016, Numerical Algorithms.
[5] H. Attouch,et al. Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions , 2019, Applied Mathematics & Optimization.
[6] Radu Ioan Bot,et al. A primal-dual dynamical approach to structured convex minimization problems , 2019, 1905.08290.
[7] Matthew K. Tam,et al. Shadow Douglas–Rachford Splitting for Monotone Inclusions , 2019, Applied Mathematics & Optimization.
[8] Radu Ioan Bot,et al. The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints , 2018, Journal of Optimization Theory and Applications.
[9] Juan Peypouquet,et al. Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators , 2017, Mathematical Programming.
[10] Radu Ioan Bot,et al. Second Order Forward-Backward Dynamical Systems For Monotone Inclusion Problems , 2015, SIAM J. Control. Optim..
[11] Stephen P. Boyd,et al. A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..
[12] Radu Ioan Bot,et al. A forward-backward-forward differential equation and its asymptotic properties , 2015, 1503.07728.
[13] Richard G. Baraniuk,et al. Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..
[14] Benar Fux Svaiter,et al. Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces , 2014, J. Optim. Theory Appl..
[15] H. Attouch,et al. Dynamical systems and forward–backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator , 2014, 1403.6312.
[16] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[17] Benar Fux Svaiter,et al. A Continuous Dynamical Newton-Like Approach to Solving Monotone Inclusions , 2011, SIAM J. Control. Optim..
[18] R. Boţ,et al. Conjugate Duality in Convex Optimization , 2010 .
[19] S. Sorin,et al. Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.
[20] J. Bolte. Continuous Gradient Projection Method in Hilbert Spaces , 2003 .
[21] A. Antipin,et al. MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS BY MEANS OF DIFFERENTIAL EQUATIONS , 2003 .
[22] P. Tseng. Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .
[23] A. Haraux,et al. Systèmes dynamiques dissipatifs et applications , 1991 .
[24] Ronald E. Bruck. Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .
[25] J. L. Webb. OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .
[26] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[27] H. Brezis. Propriétés Régularisantes de Certains Semi-Groupes Non Linéaires , 1971 .
[28] Amnon Pazy,et al. Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .