A Dynamical Approach to Two-Block Separable Convex Optimization Problems with Linear Constraints

Abstract The aim of this manuscript is to approach by means of first order differential equations/inclusions convex programming problems with two-block separable linear constraints and objectives, whereby (at least) one of the components of the latter is assumed to be strongly convex. Each block of the objective contains a further smooth convex function. We investigate the dynamical system proposed and prove that its trajectories converge weakly to a saddle point of the Lagrangian of the convex optimization problem. The dynamical system provides through time discretization the alternating minimization algorithm AMA and also its proximal variant recently introduced in the literature.

[1]  H. Attouch,et al.  Fast optimization via inertial dynamics with closed-loop damping , 2020, Journal of the European Mathematical Society.

[2]  E. R. Csetnek Continuous Dynamics Related to Monotone Inclusions and Non-Smooth Optimization Problems , 2020, 2007.00460.

[3]  Hedy Attouch Fast inertial proximal ADMM algorithms for convex structured optimization with linear constraint , 2020 .

[4]  Radu Ioan Bot,et al.  Fixing and extending some recent results on the ADMM algorithm , 2016, Numerical Algorithms.

[5]  H. Attouch,et al.  Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions , 2019, Applied Mathematics & Optimization.

[6]  Radu Ioan Bot,et al.  A primal-dual dynamical approach to structured convex minimization problems , 2019, 1905.08290.

[7]  Matthew K. Tam,et al.  Shadow Douglas–Rachford Splitting for Monotone Inclusions , 2019, Applied Mathematics & Optimization.

[8]  Radu Ioan Bot,et al.  The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints , 2018, Journal of Optimization Theory and Applications.

[9]  Juan Peypouquet,et al.  Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators , 2017, Mathematical Programming.

[10]  Radu Ioan Bot,et al.  Second Order Forward-Backward Dynamical Systems For Monotone Inclusion Problems , 2015, SIAM J. Control. Optim..

[11]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[12]  Radu Ioan Bot,et al.  A forward-backward-forward differential equation and its asymptotic properties , 2015, 1503.07728.

[13]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[14]  Benar Fux Svaiter,et al.  Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces , 2014, J. Optim. Theory Appl..

[15]  H. Attouch,et al.  Dynamical systems and forward–backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator , 2014, 1403.6312.

[16]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[17]  Benar Fux Svaiter,et al.  A Continuous Dynamical Newton-Like Approach to Solving Monotone Inclusions , 2011, SIAM J. Control. Optim..

[18]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[19]  S. Sorin,et al.  Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.

[20]  J. Bolte Continuous Gradient Projection Method in Hilbert Spaces , 2003 .

[21]  A. Antipin,et al.  MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS BY MEANS OF DIFFERENTIAL EQUATIONS , 2003 .

[22]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[23]  A. Haraux,et al.  Systèmes dynamiques dissipatifs et applications , 1991 .

[24]  Ronald E. Bruck Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .

[25]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[26]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[27]  H. Brezis Propriétés Régularisantes de Certains Semi-Groupes Non Linéaires , 1971 .

[28]  Amnon Pazy,et al.  Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .