A comparison between molecular dynamics and X-ray results for dissociated CO in myoglobin

[1]  D Bourgeois,et al.  Photolysis of the Carbon Monoxide Complex of Myoglobin: Nanosecond Time-Resolved Crystallography , 1996, Science.

[2]  G. Nienhaus,et al.  X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Wilfried Schildkamp,et al.  Single-pulse Laue images from macromolecular crystals recorded at ESRF , 1995, Optics & Photonics.

[4]  M. Lim,et al.  Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O , 1995, Science.

[5]  M. Lim,et al.  Mid-infrared vibrational spectrum of CO after photodissociation from heme: Evidence for a ligand docking site in the heme pocket of hemoglobin and myoglobin , 1995 .

[6]  I. Schlichting,et al.  Crystal structure of photolysed carbonmonoxy-myoglobin , 1994, Nature.

[7]  K. Moffat,et al.  Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K , 1994, Nature Structural Biology.

[8]  Stephen G. Sligar,et al.  Mechanisms of Ligand Recognition in Myoglobin , 1994 .

[9]  M Levitt,et al.  Water: now you see it, now you don't. , 1993, Structure.

[10]  B. Brooks,et al.  Protein hydration elucidated by molecular dynamics simulation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Straub,et al.  Molecular dynamics simulation of NO recombination to myoglobin mutants. , 1993, The Journal of biological chemistry.

[12]  J. Hajdu,et al.  Fast crystallography and time-resolved structures. , 1993, Annual review of biophysics and biomolecular structure.

[13]  R Elber,et al.  Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants. , 1992, The Journal of biological chemistry.

[14]  M. Karplus,et al.  Molecular dynamics study of the photodissociation of carbon monoxide from myoglobin : ligand dynamics in the first 10 ps , 1991 .

[15]  Krzysztof Kuczera,et al.  Ligand binding and protein relaxation in heme proteins: a room temperature analysis of nitric oxide geminate recombination , 1991 .

[16]  M. Karplus,et al.  Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin , 1990 .

[17]  R. Hochstrasser,et al.  Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[18]  B. Brooks,et al.  The effects of truncating long‐range forces on protein dynamics , 1989, Proteins.

[19]  J. Petrich,et al.  Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. , 1988, Biochemistry.

[20]  M. Karplus,et al.  Anisotropy and anharmonicity of atomic fluctuations in proteins: implications for X-ray analysis. , 1988, Biochemistry.

[21]  D. Magde,et al.  Picosecond and nanosecond geminate recombination of myoglobin with carbon monoxide, oxygen, nitric oxide and isocyanides , 1988 .

[22]  M Karplus,et al.  Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison , 1988, Proteins.

[23]  G. Olah,et al.  5 K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structure studies of photolyzed carboxymyoglobin. , 1987, Biochemistry.

[24]  J. Friedman,et al.  Kinetic, structural, and spectroscopic identification of geminate states of myoglobin: a ligand binding site on the reaction pathway. , 1987, Biochemistry.

[25]  J. B. Johnson,et al.  Rebinding and relaxation in the myoglobin pocket. , 1987, Biophysical chemistry.

[26]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[27]  D. Rousseau,et al.  Simulation of carboxymyoglobin photodissociation. , 1986, The Journal of biological chemistry.

[28]  M Karplus,et al.  X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 A resolution. , 1986, Journal of molecular biology.

[29]  M Karplus,et al.  Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. , 1986, Journal of molecular biology.

[30]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[31]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[32]  J. D. Mcdonald,et al.  Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. F. Bowne,et al.  Isotope Effect in Molecular Tunneling , 1980 .

[34]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[35]  J I Brauman,et al.  Nature of O2 and CO binding to metalloporphyrins and heme proteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Brunori,et al.  Enzyme Proteins. (Book Reviews: Hemoglobin and Myoglobin in Their Reactions with Ligands) , 1971 .