Entrywise convergence of iterative methods for eigenproblems

Several problems in machine learning, statistics, and other fields rely on computing eigenvectors. For large scale problems, the computation of these eigenvectors is typically performed via iterative schemes such as subspace iteration or Krylov methods. While there is classical and comprehensive analysis for subspace convergence guarantees with respect to the spectral norm, in many modern applications other notions of subspace distance are more appropriate. Recent theoretical work has focused on perturbations of subspaces measured in the $\ell_{2 \to \infty}$ norm, but does not consider the actual computation of eigenvectors. Here we address the convergence of subspace iteration when distances are measured in the $\ell_{2 \to \infty}$ norm and provide deterministic bounds. We complement our analysis with a practical stopping criterion and demonstrate its applicability via numerical experiments. Our results show that one can get comparable performance on downstream tasks while requiring fewer iterations, thereby saving substantial computational time.

[1]  Mikhail Belkin,et al.  Unperturbed: spectral analysis beyond Davis-Kahan , 2017, ALT.

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[4]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[5]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[6]  S. Gower,et al.  Netflix Prize and SVD , 2014 .

[7]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[8]  Per-Gunnar Martinsson,et al.  Randomized Numerical Linear Algebra: Foundations & Algorithms , 2020, ArXiv.

[9]  Jure Leskovec,et al.  Statistical properties of community structure in large social and information networks , 2008, WWW.

[10]  Charles A. Sutton,et al.  GEMSEC: Graph Embedding with Self Clustering , 2018, 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[11]  C. Priebe,et al.  Perfect Clustering for Stochastic Blockmodel Graphs via Adjacency Spectral Embedding , 2013, 1310.0532.

[12]  Peter J. Bickel,et al.  Pseudo-likelihood methods for community detection in large sparse networks , 2012, 1207.2340.

[13]  Lexing Ying,et al.  Simple, direct and efficient multi-way spectral clustering , 2018, Information and Inference: A Journal of the IMA.

[14]  H. Vincent Poor,et al.  Subspace Estimation from Unbalanced and Incomplete Data Matrices: 𝓁2, ∞ Statistical Guarantees , 2021, ArXiv.

[15]  David A. Bader,et al.  Graph Ranking Guarantees for Numerical Approximations to Katz Centrality , 2017, ICCS.

[16]  M. Kendall Rank Correlation Methods , 1949 .

[17]  H. Vincent Poor,et al.  Subspace Estimation from Unbalanced and Incomplete Data Matrices: $\ell_{2,\infty}$ Statistical Guarantees. , 2019 .

[18]  Matthias Grossglauser,et al.  Fast and Accurate Inference of Plackett-Luce Models , 2015, NIPS.

[19]  Dong Xia,et al.  Perturbation of linear forms of singular vectors under Gaussian noise , 2015 .

[20]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[21]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[22]  Nicolas Boumal,et al.  Near-Optimal Bounds for Phase Synchronization , 2017, SIAM J. Optim..

[23]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[24]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[25]  Nisheeth K. Vishnoi,et al.  A local spectral method for graphs: with applications to improving graph partitions and exploring data graphs locally , 2009, J. Mach. Learn. Res..

[26]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[27]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[28]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[29]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[30]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[31]  Yilin Zhang,et al.  Understanding Regularized Spectral Clustering via Graph Conductance , 2018, NeurIPS.

[32]  Pierre Vandergheynst,et al.  Graph Signal Processing: Overview, Challenges, and Applications , 2017, Proceedings of the IEEE.

[33]  C. Priebe,et al.  The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics , 2017, The Annals of Statistics.

[34]  Iain S. Duff,et al.  Stopping Criteria for Iterative Solvers , 1992, SIAM J. Matrix Anal. Appl..

[35]  Jianqing Fan,et al.  Robust high dimensional factor models with applications to statistical machine learning. , 2018, Statistical science : a review journal of the Institute of Mathematical Statistics.

[36]  M. Newman Mathematics of networks , 2018, Oxford Scholarship Online.

[37]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[38]  David A. Bader,et al.  New stopping criteria for spectral partitioning , 2016, 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[39]  Weichen Wang,et al.  An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application , 2017, J. Mach. Learn. Res..

[40]  Jianqing Fan,et al.  ENTRYWISE EIGENVECTOR ANALYSIS OF RANDOM MATRICES WITH LOW EXPECTED RANK. , 2017, Annals of statistics.

[41]  Tai Qin,et al.  Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel , 2013, NIPS.

[42]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[43]  James Demmel,et al.  On computing condition numbers for the nonsymmetric eigenproblem , 1993, TOMS.

[44]  G. Stewart Accelerating the orthogonal iteration for the eigenvectors of a Hermitian matrix , 1969 .

[45]  Sebastiano Vigna,et al.  Spectral ranking , 2009, Network Science.

[46]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[47]  Thierry BraconnieryCERFACS Stopping Criteria for Eigensolvers , 1994 .

[48]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[49]  Yuxin Chen,et al.  Spectral Method and Regularized MLE Are Both Optimal for Top-$K$ Ranking , 2017, Annals of statistics.

[50]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[51]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .

[52]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[53]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[54]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[55]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[56]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[57]  Chen Cheng,et al.  Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices , 2018, ArXiv.

[58]  Jianqing Fan,et al.  An l∞ Eigenvector Perturbation Bound and Its Application to Robust Covariance Estimation , 2018, Journal of machine learning research : JMLR.

[59]  Fan Zhou,et al.  The Sup-norm Perturbation of HOSVD and Low Rank Tensor Denoising , 2019, J. Mach. Learn. Res..

[60]  Anil Damle,et al.  Uniform Bounds for Invariant Subspace Perturbations , 2020, SIAM J. Matrix Anal. Appl..

[61]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.