United States Environmental Protection Agency Insect Resistance Management Programs for Plant-Incorporated Protectants and Use of Simulation Modeling

Widespread adoption of Bt crops and persistence of Bt toxins expressed in transgenic plants could cause rapid evolution of resistance in pests and lead to the loss of the intrinsic environmental and economic benefits associated with this technology and that of Bt microbial pesticides used in organic and conventional agriculture. The United States Environmental Protection Agency (EPA) requires insect resistance management (IRM) programs for plant-incorporated protectants (PIPs) that express insecticidal toxins from the soil bacterium Bacillus thuringiensis (Bt). The basis for this decision is that maintaining the susceptibility of agricultural pest insects to Bt is an important public resource. In contrast to the voluntary pesticide resistance management programs for conventional pesticides, the IRM programs for Bt PIPs are mandatory and are unprecedented in their detail, scope, and implementation. EPA has relied on both empirical data and mathematical simulation models to assess the evolution of resistance and evaluate IRM strategies. IRM requirements have changed over the past 15 years in conjunction with the development of new Bt PIP products and advances in our understanding of the biological, ecological, genetic, and operational factors that influence the evolution of insect resistance. This chapter focuses on the scientific framework EPA uses to assess and manage the risk of insect resistance to Bt PIPs with particular interest in the factors that influence resistance and the use of IRM models to evaluate different resistance management strategies.

[1]  D. Heckel,et al.  Identification of a Gene Associated with Bt Resistance in Heliothis virescens , 2001, Science.

[2]  S. Morin,et al.  DNA Screening Reveals Pink Bollworm Resistance to Bt Cotton Remains Rare After a Decade of Exposure , 2006, Journal of economic entomology.

[3]  H. Dong,et al.  Variability of Endotoxin Expression in Bt Transgenic Cotton , 2007 .

[4]  Rosalind J Wright,et al.  Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers , 2010, Science.

[5]  J. R. Bradley,et al.  Regional assessment of Helicoverpa zea populations on cotton and non‐cotton crop hosts , 2008 .

[6]  C. Ellers-kirk,et al.  Predicting Spring Moth Emergence in the Pink Bollworm (Lepidoptera: Gelechiidae): Implications for Managing Resistance to Transgenic Cotton , 2001, Journal of economic entomology.

[7]  B. Siegfried,et al.  Cross-Resistance of Cry1Ab-Selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-Endotoxins , 2004, Journal of economic entomology.

[8]  L. Bulla,et al.  Insect Resistance to Bacillus thuringiensis , 2003, Molecular & Cellular Proteomics.

[9]  S. Gill,et al.  Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. , 2007, Toxicon : official journal of the International Society on Toxinology.

[10]  Sharlene R. Matten,et al.  How Governmental Regulation Can Help or Hinder the Integration of Bt Crops within IPM Programs , 2008, Integration of Insect-Resistant Genetically Modified Crops within IPM Programs.

[11]  M. Bonsall,et al.  Combining Pest Control and Resistance Management: Synergy of Engineered Insects With Bt Crops , 2009, Journal of economic entomology.

[12]  R. Frutos,et al.  Managing Insect Resistance to Plants Producing Bacillus thuringiensis Toxins , 1999 .

[13]  T. Vaughn,et al.  Baseline Susceptibility of Western Corn Rootworm (Coleoptera: Crysomelidae) to Cry3Bb1 Bacillus thuringiensis Toxin , 2005, Journal of economic entomology.

[14]  R. H. Shaw,et al.  Environment and the Sexual Activity of the European Corn Borer , 1977 .

[15]  G. Thompson,et al.  Insecticide Resistance Action Committee (IRAC) , 2003 .

[16]  M. Adang,et al.  Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. , 2006, Journal of invertebrate pathology.

[17]  Jennifer L. Petzold-Maxwell,et al.  Field-Evolved Resistance to Bt Maize by Western Corn Rootworm , 2011, PloS one.

[18]  B. Tabashnik,et al.  Cross-Resistance of Pink Bollworm (Pectinophora gossypiella) to Bacillus thuringiensis Toxins , 2000, Applied and Environmental Microbiology.

[19]  J. Baldwin,et al.  Allele Frequency of Resistance to Bacillus thuringiensis Cry1Ab Corn in Louisiana Populations of Sugarcane Borer (Lepidoptera: Crambidae) , 2008, Journal of economic entomology.

[20]  C. Parker,et al.  Interplant movement of Heliothis virescens (Lepidoptera: Noctuidae) larvae in pure and mixed plantings of cotton with and without expression of the Cry1Ac delta-endotoxin protein of Bacillus thuringiensis Berliner. , 1999, Journal of economic entomology.

[21]  Stephen P. Ellner,et al.  Spread of resistance in spatially extended regions of transgenic cotton : Implications for management of Heliothis virescens (Lepidoptera: Noctuidae) , 1999 .

[22]  D. Onstad,et al.  Modeling the Development of Resistance by Stalk-Boring Lepidoptera (Crambidae) in Areas with Irrigated Transgenic Corn , 2002 .

[23]  R. Hellmich,et al.  Influencing European Corn Borer (Lepidoptera: Crambidae) Aggregation Sites in Small Grain Crops , 1998 .

[24]  M. Adang,et al.  Importance of Cry1 δ-Endotoxin Domain II Loops for Binding Specificity in Heliothis virescens(L.) , 2001, Applied and Environmental Microbiology.

[25]  P. Denolf,et al.  Two Different Bacillus thuringiensis Delta-Endotoxin Receptors in the Midgut Brush Border Membrane of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) , 1993, Applied and environmental microbiology.

[26]  J. Ferré,et al.  Insecticidal Genetically Modified Crops and Insect Resistance Management (IRM) , 2008 .

[27]  G D Thompson,et al.  The politics of resistance management: working towards pesticide resistance management globally , 2008 .

[28]  J. Ferré,et al.  Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis , 2002 .

[29]  R. Leonard,et al.  Frequency of resistance alleles to Bacillus thuringiensis-corn in Texas populations of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). , 2009 .

[30]  G. Frisvold,et al.  Economic Effects of Bt Cotton Adoption and the Impact of Government Programs , 2003 .

[31]  Jian-Zhou Zhao,et al.  Insect resistance management in GM crops: past, present and future , 2005, Nature Biotechnology.

[32]  S. Morin,et al.  Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[34]  M. Caprio,et al.  Source-Sink Dynamics Between Transgenic and Non-Transgenic Habitats and Their Role in the Evolution of Resistance , 2001, Journal of economic entomology.

[35]  R. T. Roush,et al.  Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? , 1998 .

[36]  B. Tabashnik,et al.  Resistance Management for Sustainable Use of Bacillus thuringiensis Crops in Integrated Pest Management , 2004 .

[37]  D. Onstad,et al.  Using a generational time-step model to simulate dynamics of adaptation to transgenic corn and crop rotation by western corn rootworm (Coleoptera: Chrysomelidae). , 2005, Journal of economic entomology.

[38]  B. Tabashnik,et al.  Evolution of Resistance to Bacillus Thuringiensis , 1994 .

[39]  A. Ives,et al.  Evolution of resistance to Bt crops: directional selection in structured environments , 2002 .

[40]  R. Taussig,et al.  A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  F. Rousset,et al.  High dose refuge strategies and genetically modified crops – reply to Tabashnik et al. , 2004 .

[42]  C. S. Dhawad,et al.  Inheritance of resistance in Indian Helicoverpa armigera (Hübner) to Cry1Ac toxin of Bacillus thuringiensis , 2006 .

[43]  J. R. Bradley,et al.  Spatial and temporal variability in host use by Helicoverpa zea as measured by analyses of stable carbon isotope ratios and gossypol residues. , 2010 .

[44]  M. Rice,et al.  Risk and the Value of Bt Corn , 2004 .

[45]  ADVERSE SELECTION, MORAL HAZARD, AND GROWER COMPLIANCE WITH BT CORN REFUGE , 2004 .

[46]  M. Adang,et al.  Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Akhurst,et al.  Resistance to the Cry1Ac δ-Endotoxin of Bacillus thuringiensis in the Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) , 2003 .

[48]  Richard T. Roush,et al.  Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field , 2003, Journal of economic entomology.

[49]  Tetsuo Saito,et al.  Pest Resistance to Pesticides , 1984, Springer US.

[50]  K. Olsen,et al.  Plant-Toxin Interactions in Transgenic Bt Cotton and their Effect on Mortality of Helicoverpa armigera (Lepidoptera: Noctuidae) , 2000, Journal of economic entomology.

[51]  D. Wright,et al.  Modeling the spatial and temporal location of refugia to manage resistance in Bt transgenic crops , 2003 .

[52]  R. Hellmich,et al.  Aggregation and Dispersal Behavior of Marked and Released European Corn Borer (Lepidoptera: Crambidae) Adults , 2001 .

[53]  E Levine,et al.  Economics versus alleles: balancing integrated pest management and insect resistance management for rotation-resistant western corn rootworm (Coleoptera: Chrysomelidae). , 2003, Journal of economic entomology.

[54]  J. Gore,et al.  Development of bollworms, Helicoverpa zea, on two commercial Bollgard® cultivars that differ in overall Cry1Ac levels , 2004, Journal of insect science.

[55]  M. Ellersieck,et al.  Role of Egg Density on Establishment and Plant-to-Plant Movement by Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae) , 2004, Journal of economic entomology.

[56]  J. R. Bradley,et al.  Comparative Production of Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Cotton Expressing Either One or Two Bacillus thuringiensis Proteins with and without Insecticide Oversprays , 2004, Journal of economic entomology.

[57]  L. Masson,et al.  One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Silvia Secchi,et al.  Managing European Corn Borer Resistance To Bt Corn With Dynamic Refuges , 2001 .

[59]  S. Downes,et al.  Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. , 2007, Journal of invertebrate pathology.

[60]  R. Luttrell,et al.  Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) Populations to Cry1Ac Insecticidal Protein , 2006, Journal of economic entomology.

[61]  Mario Soberón,et al.  Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance , 2011, Nature Biotechnology.

[62]  C. S. Dhawad,et al.  Susceptibility of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) to the Bacillus thuringiensis toxin Cry2Ab before and after the introduction of Bollgard-II , 2009 .

[63]  Jonathan Gressel,et al.  Problems in qualifying and quantifying assumptions in plant protection models: Resultant simulations can be mistaken by a factor of million ☆ , 2005 .

[64]  D. Wright,et al.  Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella. , 2003, Pest management science.

[65]  J. Re,et al.  Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie) , 2003 .

[66]  W. Moar,et al.  Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie) , 2007, Applied and Environmental Microbiology.

[67]  D. Andow,et al.  Managing the Evolution of Insect Resistance to Transgenic Plants , 1995, Science.

[68]  M. Whalon,et al.  Global Pesticide Resistance in Arthropods , 2008 .

[69]  Fred Gould,et al.  Modeling the dynamics of adaptation to transgenic maize by European corn borer , 1998 .

[70]  D. Johnson,et al.  Indianmeal Moth (Lepidoptera: Pyralidae) Resistance to Different Strains and Mixtures of Bacillus thuringiensis , 1992 .

[71]  B. Hibbard,et al.  Comparison of Nonmaize Hosts to Support Western Corn Rootworm (Coleoptera: Chrysomelidae) Larval Biology , 2004 .

[72]  Terrance M. Hurley,et al.  FARMER DEMAND FOR CORN ROOTWORM BT CORN: DO INSECT RESISTANCE MANAGEMENT GUIDELINES MATTER? , 2006 .

[73]  J. Griffitts,et al.  Many roads to resistance: how invertebrates adapt to Bt toxins , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[74]  S. Gill,et al.  Bacillus thuringiensis: A story of a successful bioinsecticide. , 2011, Insect biochemistry and molecular biology.

[75]  B. Siegfried,et al.  Baseline Susceptibility of the Corn Earworm (Lepidoptera: Noctuidae) to the Cry1Ab Toxin from Bacillus thuringiensis , 2000, Journal of economic entomology.

[76]  Jeffrey Hyde,et al.  Insect Resistance Management for Bt Corn: An Assessment of Community Refuge Schemes , 2007 .

[77]  Michael A. Caprio,et al.  Evaluating Resistance Management Strategies for Multiple Toxins in the Presence of External Refuges , 1998 .

[78]  S. Ramaswamy,et al.  Dispersal of Adult Diatraea grandiosella (Lepidoptera: Crambidae) and Its Implications for Corn Borer Resistance Management in Bacillus thuringiensis Maize , 2006 .

[79]  D. Widawsky,et al.  Economic Analysis and Regulating Pesticide Biotechnology at the U.S. Environmental Protection Agency , 2006 .

[80]  Juliet D. Tang,et al.  Greenhouse Tests on Resistance Management of Bt Transgenic Plants Using Refuge Strategies , 2001, Journal of economic entomology.

[81]  H. Comins,et al.  The development of insecticide resistance in the presence of migration. , 1977, Journal of theoretical biology.

[82]  Kongming Wu,et al.  Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. , 2007, Journal of invertebrate pathology.

[83]  David W. Onstad,et al.  Chapter 12 – Modeling for Prediction and Management , 2008 .

[84]  R. Hellmich,et al.  Evaluation of Ostrinia nubilalis (Lepidoptera: Crambidae) Neonate Preferences for Corn and Weeds in Corn , 2006, Journal of economic entomology.

[85]  M. Hudson,et al.  How does scientific risk assessment of GM crops fit within the wider risk analysis? , 2007, Trends in plant science.

[86]  Richard T. Roush,et al.  Managing pests and their resistance to Bacillus thuringiensis: Can transgenic crops be better than sprays? , 1994 .

[87]  David Zilberman,et al.  Regulating agricultural biotechnology : economics and policy , 2006 .

[88]  B. Tabashnik Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  J. Mahaffey,et al.  ARTHROPOD MANAGEMENT Efficacy of Seed Mixes of Transgenic Bt and Nontransgenic Cotton Against Bollworm, Helicoverpa zea Boddie , 2001 .

[90]  D. Andow,et al.  Frequency and fitness cost of resistance to Bacillus thuringiensis in Chrysomela tremulae (Coleoptera: Chrysomelidae) , 2006, Heredity.

[91]  D. Andow,et al.  Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera : Crambidae) , 1999 .

[92]  C. Taylor,et al.  Genetic and biological influences in the evolution of insecticide resistance. , 1977, Journal of economic entomology.

[93]  R. Mahon,et al.  Limited Survival of a Cry2Ab-Resistant Strain of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bollgard II , 2009, Journal of economic entomology.

[94]  Stephen C. Trowell,et al.  Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis , 1997 .

[95]  Kongming Wu,et al.  Resistance Monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bt Insecticidal Protein During 2001–2004 in China , 2006 .

[96]  V. Kalia,et al.  Baseline susceptibility of the American bollworm, Helicoverpa armigera (Hübner) to Bacillus thuringiensis Berl. var. kurstaki and its endotoxins in India. , 2005 .

[97]  J. Ringland,et al.  A situation in which a local nontoxic refuge promotes pest resistance to toxic crops. , 2007, Theoretical population biology.

[98]  J. Adamczyk,et al.  Relative Concentration of Cry1A in Maize Leaves and Cotton Bolls with Diverse Chlorophyll Content and Corresponding Larval Development of Fall Armyworm (Lepidoptera: Noctuidae) and Southwestern Corn Borer (Lepidoptera: Crambidae) on Maize Whorl Leaf Profiles , 2004, Journal of economic entomology.

[99]  B. Hibbard,et al.  Host Suitability of Nonmaize Agroecosystem Grasses for the Western Corn Rootworm (Coleoptera: Chrysomelidae) , 2004 .

[100]  J. Griffitts,et al.  Bt Toxin Resistance from Loss of a Putative Carbohydrate-Modifying Enzyme , 2001, Science.

[101]  Ru Li A simulation model for adaptation of cotton bollworm to transgenic Bt cotton in northern China , 2002 .

[102]  Juan D. López,et al.  A Polymerase Chain Reaction Screen of Field Populations of Heliothis virescens for a Retrotransposon Insertion Conferring Resistance to Bacillus thuringiensis Toxin , 2007, Journal of economic entomology.

[103]  J. Throne,et al.  Adult dispersal of Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) and its implications for resistance management in Bt‐maize , 2005 .

[104]  Timothy J. Dennehy,et al.  Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  C. Ellers-kirk,et al.  Resistance Management: Slowing Pest Adaptation to Transgenic Crops , 2003 .

[106]  D. Andow,et al.  Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis , 2003, Theoretical and Applied Genetics.

[107]  T. Vaughn,et al.  Effect of Cry3Bb1-Expressing Transgenic Corn on Plant-to-Plant Movement by Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae) , 2005, Journal of economic entomology.

[108]  D. Onstad,et al.  Effect of extended diapause on evolution of resistance to transgenic Bacillus thuringiensis corn by northern corn rootworm (Coleoptera: Chrysomelidae). , 2005, Journal of economic entomology.

[109]  B. Tabashnik,et al.  Effects of Bt Cotton and Cry1Ac Toxin on Survival and Development of Pink Bollworm (Lepidoptera: Gelechiidae) , 2001, Journal of economic entomology.

[110]  D. Altman,et al.  Pyramiding CryIA(b) Insecticidal Protein and Terpenoids in Cotton to Resist Tobacco Budworm (Lepidoptera: Noctuidae) , 1996 .

[111]  D. Andow,et al.  Frequency of Resistance to Bacillus thuringiensis Toxin Cry1Ab in Southern United States Corn Belt Population of European Corn Borer (Lepidoptera: Crambidae) , 2006 .

[112]  F. Rousset,et al.  Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton , 2003, Journal of evolutionary biology.

[113]  Xinjun Xu,et al.  Disruption of a Cadherin Gene Associated with Resistance to Cry1Ac δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera , 2005, Applied and Environmental Microbiology.

[114]  Elsie M. Sunderland,et al.  Draft Guidance on the Development, Evaluation, and Application of Regulatory Environmental Models , 2003 .

[115]  F. Gould Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. , 1998, Annual review of entomology.

[116]  J. Glaser,et al.  Sustainability of insect resistance management strategies for transgenic Bt corn. , 2003, Biotechnology advances.

[117]  D. Onstad,et al.  Seed Mixtures as a Resistance Management Strategy for European Corn Borers (Lepidoptera: Crambidae) Infesting Transgenic Corn Expressing Cry1Ab Protein , 2000, Journal of economic entomology.

[118]  Juan D. López,et al.  Bacillus thuringiensis Cry1Ac Resistance Frequency in Tobacco Budworm (Lepidoptera: Noctuidae) , 2009, Journal of economic entomology.

[119]  S. Sims,et al.  Geographic Susceptibility of Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) to Bacillus thuringiensis , 1993 .

[120]  M. Hochberg,et al.  Fees or refuges: which is better for the sustainable management of insect resistance to transgenic Bt corn? , 2006, Biology Letters.

[121]  G. Mani Evolution of resistance in the presence of two insecticides. , 1985, Genetics.

[122]  Terrance M. Hurley,et al.  Bt Corn and Insect Resistance: An Economic Assessment of Refuges , 2001 .

[123]  J. Gore,et al.  Behavior of Bollworm (Lepidoptera: Noctuidae) Larvae on Genetically Engineered Cotton , 2002, Journal of economic entomology.

[124]  I. Nicholson,et al.  New Resistance Mechanism in Helicoverpa armigera Threatens Transgenic Crops Expressing Bacillus thuringiensis Cry1Ac Toxin , 2005, Applied and Environmental Microbiology.

[125]  M. Ellersieck,et al.  Mortality of Western Corn Rootworm Larvae on MIR604 Transgenic Maize Roots: Field Survivorship Has No Significant Impact on Survivorship of F1 Progeny on MIR604 , 2010, Journal of economic entomology.

[126]  L. Young,et al.  Baseline Susceptibility of European Corn Borer (Lepidoptera: Crambidae) to Bacillus thuringiensis Toxins , 1999 .

[127]  Juliet D. Tang,et al.  Field tests on managing resistance to Bt-engineered plants , 2000, Nature Biotechnology.

[128]  O. Koul,et al.  Current resistance management strategies for Bt corn in the United States. , 2004 .

[129]  David W. Onstad,et al.  Modeling for Prediction and Management , 2014 .

[130]  S. Gill,et al.  Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. , 2004, Biochimica et biophysica acta.

[131]  B. Tabashnik,et al.  Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Colin J. Thompson,et al.  Dynamics of insect resistance in Bt-corn , 2004 .

[133]  G. Head,et al.  Determining Larval Host Plant Use by a Polyphagous Lepidopteran Through Analysis of Adult Moths for Plant Secondary Metabolites , 2007, Journal of Chemical Ecology.

[134]  A. Shelton,et al.  Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution , 2003, Nature Biotechnology.

[135]  B. H. Knowles,et al.  Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity , 1987 .

[136]  D. Bosch,et al.  Development ofBacillus thuringiensisCryIC Resistance by Spodoptera exigua(Hubner) (Lepidoptera: Noctuidae)† , 1995 .

[137]  Terrance M. Hurley,et al.  Bt Corn Farmer Compliance with Insect Resistance Management Requirements in Minnesota and Wisconsin , 2005 .

[138]  D. Andow Resisting resistance to Bt-corn , 2001 .

[139]  J. Adamczyk,et al.  Correlating Differences in Larval Survival and Development of Bollworm (Lepidoptera: Noctuidae) and Fall Armyworm (Lepidoptera: Noctuidae) to Differential Expression of Cry1A(c) δ-Endotoxin in Various Plant Parts Among Commercial Cultivars of Transgenic Bacillus thuringiensis Cotton , 2001, Journal of economic entomology.

[140]  A. Shelton,et al.  Field-evolved resistance to Bt toxins , 2008, Nature Biotechnology.

[141]  G. Frisvold Bt Resistance Management: The Economics of Refuges , 2006 .

[142]  D. Andow,et al.  Frequency of Resistance to Bacillus thuringiensis Toxin Cry1Ab in an Iowa Population of European Corn Borer (Lepidoptera: Crambidae) , 2000, Journal of economic entomology.

[143]  D. Andow,et al.  Field observations of Ostrinia nubilalis eclosion and post‐eclosion activity of females around their natal plants , 2011 .

[144]  J. R. Bradley,et al.  Genetic Variation for Resistance to Bacillus thuringiensis Toxins in Helicoverpa zea (Lepidoptera: Noctuidae) in Eastern North Carolina , 2006, Journal of economic entomology.

[145]  D. Ellar,et al.  Role of Receptors in Bacillus thuringiensis Crystal Toxin Activity , 2007, Microbiology and Molecular Biology Reviews.

[146]  C. Neuhauser,et al.  Natural Enemies and the Evolution of Resistance to Transgenic Insecticidal Crops by Pest Insects: The Role of Egg Mortality , 2005 .

[147]  B. Siegfried,et al.  Validation of a novel resistance monitoring technique for corn rootworm (Coleoptera: Chrysomelidae) and event DAS‐59122‐7 maize , 2008 .

[148]  D. Gustafson,et al.  Modeling the Impact of Alternative Hosts on Helicoverpa zea Adaptation to Bollgard Cotton , 2006 .

[149]  F. Gould,et al.  Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability , 2004, Journal of evolutionary biology.

[150]  F. Gould,et al.  Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China , 2007 .

[151]  F. Gould,et al.  Impact of Small Fitness Costs on Pest Adaptation to Crop Varieties with Multiple Toxins: A Heuristic Model , 2006 .

[152]  C. Ellers-kirk,et al.  Effects of Gossypol on Fitness Costs Associated with Resistance to Bt Cotton in Pink Bollworm , 2004, Journal of economic entomology.

[153]  A. Ives,et al.  Contamination and management of resistance evolution to high-dose transgenic insecticidal crops , 2011, Theoretical Ecology.

[154]  D. Onstad,et al.  Economic Analysis of Dynamic Management Strategies Utilizing Transgenic Corn for Control of Western Corn Rootworm (Coleoptera: Chrysomelidae) , 2005, Journal of economic entomology.

[155]  F. Gould,et al.  Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[156]  J. Gore,et al.  Bollworm (Lepidoptera: Noctuidae) Survival on ‘Bollgard’ and ‘Bollgard II’ Cotton Flower Bud and Flower Components , 2001, Journal of economic entomology.

[157]  D. Onstad Modeling larval survival and movement to evaluate seed mixtures of transgenic corn for control of western corn rootworm (Coleoptera: Chrysomelidae). , 2006, Journal of economic entomology.

[158]  F. Gould,et al.  Bacillus thuringiensis-toxin resistance management: Stable isotope assessment of alternate host use by Helicoverpazea , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Charles E. Taylor,et al.  Evolution of Resistance to Insecticides: The Role of Mathematical Models and Computer Simulations , 1983 .

[160]  C. Ellers-kirk,et al.  Fitness Costs and Maternal Effects Associated with Resistance to Transgenic Cotton in the Pink Bollworm (Lepidoptera: Gelechiidae) , 2001, Journal of economic entomology.

[161]  R. Roush Bt-transgenic crops : just another pretty insecticide or a chance for a new start in resistance management ? , 1997 .

[162]  G. DeGrandi-Hoffman,et al.  Outcrossed cottonseed and adventitious Bt plants in Arizona refuges. , 2008, Environmental biosafety research.

[163]  C. Ellers-kirk,et al.  Overwintering Cost Associated with Resistance to Transgenic Cotton in the Pink Bollworm (Lepidoptera: Gelechiidae) , 2001, Journal of economic entomology.

[164]  M. Ford,et al.  Combating resistance to xenobiotics : biological and chemical approaches , 1987 .

[165]  J. Greenplate Quantification of Bacillus thuringiensis Insect Control Protein Cry1Ac Over Time in Bollgard Cotton Fruit and Terminals , 1999 .

[166]  B. Tabashnik,et al.  Field-Evolved Insect Resistance to Bt Crops: Definition, Theory, and Data , 2009, Journal of economic entomology.

[167]  D. Onstad,et al.  Modeling Evolution of Diabrotica Virgifera Virgifera (Coleoptera: Chrysomelidae) to Transgenic Corn with Two Insecticidal Traits , 2010, Journal of economic entomology.

[168]  William K. Lauenroth,et al.  Models in Ecosystem Science , 2003, Models in Ecosystem Science.

[169]  Shansong Gao,et al.  Evaluation of the Natural Refuge Function for Helicoverpa armigera (Lepidoptera: Noctuidae) within Bacillus thuringiensis Transgenic Cotton Growing Areas in North China , 2002, Journal of economic entomology.

[170]  J. B.J. van Rensburg,et al.  First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize , 2007 .

[171]  J. Ferré,et al.  Common Receptor for Bacillus thuringiensis Toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua , 2005, Applied and Environmental Microbiology.

[172]  John J. Adamczyk,et al.  Physiologically based demographics of Bt cotton–pest interactions: II. Temporal refuges, natural enemy interactions , 2006 .

[173]  D. Onstad,et al.  Modeling the development of resistance by stalk-boring lepidopteran insects (Crambidae) in areas with transgenic corn and frequent insecticide use. , 2002, Journal of economic entomology.

[174]  Managing Resistance Evolution in Two Pests to Two Toxins with Refugia , 2004 .

[175]  Kevin C. Brown,et al.  Pesticide resistance: Strategies and tactics for management: edited by the Committee on Strategies for the Management of Pesticide Resistant Pest Populations, National Academy Press, 1986. £30.15 (xi + 477 pages) ISBN 0 309 03627 5 , 1987 .

[176]  G. Head,et al.  Implications of Regulating Insect Resistance Management , 2001 .

[177]  D. Altman,et al.  Expression and Segregation of Genes Encoding CryIA Insecticidal Proteins in Cotton , 1998 .

[178]  R J Mahon,et al.  Resistance toBacillus thuringiensis Toxin Cry2Ab in a Strain ofHelicoverpa armigera (Lepidoptera: Noctuidae) in Australia , 2007, Journal of economic entomology.

[179]  B. V. Patil,et al.  Relative Abundance of Helicoverpa armigera (Lepidoptera: Noctuidae) on Different Host Crops in India and the Role of These Crops as Natural Refuge for Bacillus thuringiensis Cotton , 2005 .

[180]  Jorge Fernandez-Cornejo,et al.  The First Decade of Genetically Engineered Crops in the United States , 2006 .

[181]  N. Crickmore,et al.  Common, but Complex, Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins Cry1Ab and Cry1Ac , 2005, Applied and Environmental Microbiology.

[182]  M. Raymond,et al.  Insecticide Resistance and Dominance Levels , 2000, Journal of economic entomology.

[183]  Z. W. Shappley,et al.  Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management , 2003 .

[184]  Steven L. Peck,et al.  A Tutorial for Understanding Ecological Modeling Papers for the Nonmodeler , 2000 .

[185]  Leon G. Higley,et al.  Dispersal of Adult European Corn Borer (Lepidoptera: Crambidae) Within and Proximal to Irrigated and Non-irrigated Corn , 2001, Journal of economic entomology.

[186]  E. Finnegan,et al.  Season-Long Variation in Expression of Cry1Ac Gene and Efficacy of Bacillus thuringiensis Toxin in Transgenic Cotton Against Helicoverpa armigera (Lepidoptera: Noctuidae) , 2005, Journal of economic entomology.

[187]  G. Beyene,et al.  Effect of water-deficit stress on cotton plants expressing the Bacillus thuringiensis toxin , 2008 .

[188]  C. Ellers-kirk,et al.  Cadherin-Based Resistance to Bacillus thuringiensis Cotton in Hybrid Strains of Pink Bollworm: Fitness Costs and Incomplete Resistance , 2006, Journal of economic entomology.

[189]  B. Tabashnik,et al.  Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth , 1997, Applied and environmental microbiology.

[190]  Fred Gould,et al.  Do dynamics of crop maturation and herbivorous insect life cycle influence the risk of adaptation to toxins in transgenic host plants , 1998 .

[191]  B. Hibbard,et al.  Prairie Grasses as Hosts of the Northern Corn Rootworm (Coleoptera: Chrysomelidae) , 2004, Environmental entomology.

[192]  G. Kennedy,et al.  Life History Traits of Helicoverpa zea (Lepidoptera: Noctuidae) on Non-Bt and Bt Transgenic Corn Hybrids in Eastern North Carolina , 2001, Journal of Economic Entomology.

[193]  Sharlene R. Matten,et al.  Current Resistance Management Requirements for Bt Cotton in the United States , 2003 .

[194]  N. Storer,et al.  Life systems of polyphagous arthropod pests in temporally unstable cropping systems. , 2000, Annual review of entomology.

[195]  R. G. Luttrell,et al.  Susceptibility of Bollworm and Tobacco Budworm (Lepidoptera: Noctuidae) to Cry2Ab2 Insecticidal Protein , 2007, Journal of economic entomology.

[196]  S. Downes,et al.  Frequency of Alleles Conferring Resistance to the Bacillus thuringiensis Toxins Cry1Ac and Cry2Ab in Australian Populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) From 2002 to 2006 , 2009, Journal of economic entomology.

[197]  E. Pereira,et al.  Measurements of Cry1F binding and activity of luminal gut proteases in susceptible and Cry1F resistant Ostrinia nubilalis larvae (Lepidoptera: Crambidae). , 2010, Journal of invertebrate pathology.

[198]  A. Ives,et al.  MONITORING AND ADAPTIVE RESISTANCE MANAGEMENT , 2002 .

[199]  H. Nguyen,et al.  Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810 , 2007 .

[200]  J. Adamczyk,et al.  Impact of Bt Cottons Expressing One or Two Insecticidal Proteins of Bacillus thuringiensis Berliner on Growth and Survival of Noctuid (Lepidoptera) Larvae , 2001, Journal of economic entomology.

[201]  R. Akhurst,et al.  Fitness of Cry1A-Resistant and -Susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on Transgenic Cotton with Reduced Levels of Cry1Ac , 2005, Journal of economic entomology.

[202]  C. Ellers-kirk,et al.  Effects of insect population size on evolution of resistance to transgenic crops. , 2004, Journal of economic entomology.

[203]  D. Bosch,et al.  Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) , 1995, Applied and environmental microbiology.

[204]  E Levine,et al.  Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae) , 2001, Journal of economic entomology.

[205]  Kongming Wu,et al.  Suppression of Cotton Bollworm in Multiple Crops in China in Areas with Bt Toxin–Containing Cotton , 2008, Science.

[206]  D. Andow,et al.  Using an F2 Screen to Search for Resistance Alleles to Bacillus thuringiensis Toxin in European Corn Borer (Lepidoptera: Crambidae) , 1998 .

[207]  F. Gould,et al.  Selection and Genetic Analysis of a Heliothis virescens (Lepidoptera: Noctuidae) Strain with High Levels of Resistance to Bacillus thuringiensis Toxins , 1995 .

[208]  D. Crowder,et al.  Modeling the Effects of Plant-to-Plant Gene Flow, Larval Behavior, and Refuge Size on Pest Resistance to Bt Cotton , 2011 .

[209]  C. S. Dhawad,et al.  Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera(Hubner) (Noctuidae: Lepidoptera) , 2005 .

[210]  J. Babcock,et al.  Field Measures of Western Corn Rootworm (Coleoptera: Chrysomelidae) Mortality Caused by Cry34/35Ab1 Proteins Expressed in Maize Event 59122 and Implications for Trait Durability , 2006 .

[211]  K. Wu,et al.  The evolution of cotton pest management practices in China. , 2005, Annual review of entomology.

[212]  B. Tabashnik,et al.  Fitness costs of insect resistance to Bacillus thuringiensis. , 2009, Annual review of entomology.

[213]  O. Knox,et al.  Constitutive expression of Cry proteins in roots and border cells of transgenic cotton , 2007, Euphytica.

[214]  A. Ives,et al.  The evolution of resistance to two-toxin pyramid transgenic crops. , 2011, Ecological applications : a publication of the Ecological Society of America.

[215]  Stuart E. Marsh,et al.  Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[216]  Mark E. Whalon,et al.  Analysis of global pesticide resistance in arthropods. , 2008 .

[217]  G. Gujar,et al.  Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. , 2011, Pest management science.

[218]  G. Kennedy,et al.  Integration of Insect-Resistant Genetically Modified Crops within IPM Programs , 2008 .

[219]  S. Caccia,et al.  Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species , 2010, PloS one.

[220]  B. Tabashnik,et al.  Inheritance of Resistance to Bt Toxin Cry1Ac in a Field-Derived Strain of Pink Bollworm (Lepidoptera: Gelechiidae) , 2002, Journal of economic entomology.

[221]  B. Tabashnik,et al.  FITNESS COSTS OF RESISTANCE TO BACILLUS THURINGIENSIS IN THE DIAMONDBACK MOTH (PLUTELLA XYLOSTELLA) , 1994, Evolution; international journal of organic evolution.

[222]  B. Tabashnik,et al.  Development time and resistance to Bt crops , 1999, Nature.

[223]  J. Mallet,et al.  Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[224]  A. Dalecky,et al.  Resistance Evolution to Bt Crops: Predispersal Mating of European Corn Borers , 2006, PLoS biology.

[225]  R. Akhurst,et al.  Relative Fitness of Cry1A-Resistant and -Susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on Conventional and Transgenic Cotton , 2004, Journal of economic entomology.

[226]  D. Heckel,et al.  Genetic Basis of Resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae) , 2005, Journal of economic entomology.

[227]  D. Crowder,et al.  Insect resistance to Bt crops: evidence versus theory , 2008, Nature Biotechnology.

[228]  W. Moar,et al.  Fitness Costs Associated with Cry1Ac-Resistant Helicoverpa zea (Lepidoptera: Noctuidae): A Factor Countering Selection for Resistance to Bt Cotton? , 2008, Journal of economic entomology.

[229]  J. R. Bradley,et al.  Estimated Frequency of Nonrecessive Bt Resistance Genes in Bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Eastern North Carolina , 2003, Journal of economic entomology.

[230]  Andrew Paul Gutierrez,et al.  Physiologically based demographics of Bt cotton-pest interactions I. Pink bollworm resistance, refuge and risk , 2006 .

[231]  B. Tabashnik,et al.  Genetics of Pink Bollworm Resistance to Bacillus thuringiensis Toxin Cry1Ac , 2001, Journal of economic entomology.

[232]  A. Shelton,et al.  Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[233]  G. Chippendale,et al.  Susceptibility of field-collected populations of the southwestern corn borer, Diatraea grandiosella, to Bacillus thuringiensis. , 2002, Pest management science.

[234]  Fred Gould,et al.  Spatial processes in the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. , 2003, Journal of economic entomology.

[235]  Haiying Cui,et al.  Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera: Crambidae) , 2006 .

[236]  J. V. D. Berg,et al.  Resistance to Bt Maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa , 2011 .

[237]  Kongming Wu,et al.  Seasonal expression profiles of insecticidal protein and control efficacy against Helicoverpa armigera for Bt cotton in the Yangtze River valley of China. , 2005, Journal of economic entomology.

[238]  B. Singh,et al.  Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. , 2007, Journal of invertebrate pathology.

[239]  C. Ellers-kirk,et al.  Large-Scale Management of Insect Resistance to Transgenic Cotton in Arizona: Can Transgenic Insecticidal Crops be Sustained? , 2001, Journal of economic entomology.

[240]  C. Ellers-kirk,et al.  Effects of Cotton Cultivar on Fitness Costs Associated with Resistance of Pink Bollworm (Lepidoptera: Gelechiidae) to Bt Cotton , 2005, Journal of economic entomology.

[241]  J. Torres,et al.  Spatial and temporal dynamics of oviposition behavior of bollworm and three of its predators in Bt and non‐Bt cotton fields , 2006 .

[242]  J. Adamczyk BREEDING AND GENETICS Genetic Basis for Variability of Cry1Ac Expression Among Commercial Transgenic Bacillus thuringiensis (Bt) Cotton Cultivars in the United States , 2004 .

[243]  D. Andow,et al.  An In-Field Screen for Early Detection and Monitoring of Insect Resistance to Bacillus thuringiensis in Transgenic Crops , 2000, Journal of economic entomology.

[244]  Z. W. Shappley,et al.  Toxicity and Characterization of Cotton Expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 Proteins for Control of Lepidopteran Pests , 2008, Journal of economic entomology.

[245]  B. Tabashnik,et al.  Reversing insect adaptation to transgenic insecticidal plants , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[246]  N. Storer A spatially explicit model simulating western corn rootworm (Coleoptera: Chrysomelidae) adaptation to insect-resistant maize. , 2003, Journal of economic entomology.

[247]  W. Halliday,et al.  Establishment of Cry9C Susceptibility Baselines for European Corn Borer and Southwestern Corn Borer (Lepidoptera: Crambidae) , 2001, Journal of economic entomology.

[248]  S. Downes,et al.  Frequency of Alleles Conferring Resistance to the Bt Toxins Cry1Ac and Cry2Ab in Australian Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) , 2007, Journal of economic entomology.

[249]  Xianchun Li,et al.  Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm , 2009, Proceedings of the National Academy of Sciences.

[250]  K. Kramer,et al.  Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. , 1996, Insect biochemistry and molecular biology.

[251]  Graham Brookes,et al.  Global Impact of Biotech Crops: Socio-Economic and Environmental Effects in the First Ten Years of Commercial Use , 2007 .

[252]  Timothy J. Dennehy,et al.  Delayed resistance to transgenic cotton in pink bollworm , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[253]  D. Andow,et al.  Success of the high‐dose/refuge resistance management strategy after 15 years of Bt crop use in North America , 2011 .

[254]  G. Thompson,et al.  Discovery and Characterization of Field Resistance to Bt Maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico , 2010, Journal of economic entomology.

[255]  Juan Luis Jurat-Fuentes,et al.  Binding Analyses of Bacillus thuringiensis Cry δ-Endotoxins Using Brush Border Membrane Vesicles of Ostrinia nubilalis , 2001, Applied and Environmental Microbiology.

[256]  D. Bosch,et al.  Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins , 1996, Applied and environmental microbiology.

[257]  V. Kalia,et al.  Host crop influence on the susceptibility of the American bollworm, Helicoverpa armigera, to Bacillus thuringiensis ssp. kurstaki HD‐73 , 2004 .

[258]  S. Morin,et al.  Association Between Resistance to Bt Cotton and Cadherin Genotype in Pink Bollworm , 2005, Journal of economic entomology.

[259]  A. Shelton,et al.  The diversity of Bt resistance genes in species of Lepidoptera. , 2007, Journal of invertebrate pathology.

[260]  T. Malvar,et al.  Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[261]  David A. Andow,et al.  F2 screen for rare resistance alleles , 1998 .

[262]  K. Tilmon,et al.  Specialization, Speciation, and Radiation—The Evolutionary Biology of Herbivorous Insects , 2008 .

[263]  Andrew K. Jones,et al.  Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[264]  Kongming Wu,et al.  Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China. , 2003, Journal of economic entomology.