Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells.

We suggest a new type of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from their plasmon resonances. The operation principle of our structures relies on the excitation of collective modes of the nanoantenna arrays whose electric field is localized between the adjacent metal elements. We calculate a substantial enhancement of the short-circuit photocurrent for photovoltaic layers as thin as 100-150 nm. We compare our light-trapping structures with conventional anti-reflecting coatings and demonstrate that our design approach is more efficient. We show that it may provide a general background for different types of broadband light-trapping structures compatible with large-area fabrication technologies for thin-film solar cells.

[1]  V. Polojärvi,et al.  Moth-Eye Antireflection Coatings Fabricated by Nanoimprint Lithography on Dilute Nitride Solar Cell , 2011 .

[2]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[3]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[4]  D. K. Kotter,et al.  Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors , 2010 .

[5]  Er-Ping Li,et al.  Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells , 2009 .

[6]  R. LaPierre,et al.  Sulfur passivation and contact methods for GaAs nanowire solar cells , 2011, Nanotechnology.

[7]  Harry A. Atwater,et al.  Plasmonic light trapping in thin-film Si solar cells , 2012 .

[8]  M. León,et al.  Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys , 2002 .

[9]  Yuan-Sheng Tyan,et al.  Photovoltaic Materials , 1980, Science.

[10]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[11]  Harry A Atwater,et al.  Solar Cell light trapping beyond the ray optic limit. , 2012, Nano letters.

[12]  J. Nelson The physics of solar cells , 2003 .

[13]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[14]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[15]  W. Shafarman,et al.  Optical characterization of CuIn1−xGaxSe2 alloy thin films by spectroscopic ellipsometry , 2003 .

[16]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[17]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[18]  I. Nikolov,et al.  Analysis of the dispersion of optical plastic materials , 2007 .

[19]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[20]  G. Hass,et al.  Optical Properties of Silicon Monoxide in the Wavelength Region from 0.24 to 14.0 Microns , 1954 .

[21]  Joshua M. Pearce,et al.  Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics , 2002, Journal of Applied Physics.

[22]  J. Yu,et al.  Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer. , 2009, Optics letters.

[23]  J. Horwitz Infrared refractive index of polyethylene and a polyethylene-based material , 2011 .

[24]  Yi Zhang,et al.  Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. , 2012, Nano letters.

[25]  Carsten Rockstuhl,et al.  Photon management by metallic nanodiscs in thin film solar cells , 2009 .

[26]  W. Marsden I and J , 2012 .

[27]  O. Luukkonen,et al.  Tapered plasmonic waveguides with efficient and broadband field transmission , 2012 .

[28]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[29]  Sylvain Marsillac,et al.  High-efficiency solar cells based on Cu(InAl)Se2 thin films , 2002 .

[30]  Shrestha Basu Mallick,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells , 2010, Photonics Europe.

[31]  A. Mart́,et al.  Next Generation Photovoltaics , 2004 .

[32]  Eugene Bykov,et al.  Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current , 2010 .

[33]  Rolf Brendel,et al.  Thin-Film Crystalline Silicon Solar Cells: Physics and Technology , 2003 .

[34]  X. W. Sun,et al.  Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets , 2006 .

[35]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[36]  L Martin-Moreno,et al.  Domino plasmons for subwavelength terahertz circuitry. , 2009, Optics express.

[37]  Optical antireflection of a medium by nanocrystal layers , 2011 .

[38]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[39]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[40]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[43]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .