Generalized Descriptor Compression for Storage and Matching

Smarter phones have made handheld computer vision a reality, but limited bandwidth, storage space and processing power prevent mobile phones from leveraging the full body of existing research. In particular, common techniques which use feature detectors and descriptors to solve problems in image matching and augmented reality cannot be used due to their space and processing requirements. We propose a general descriptor compression method which reduces descriptor size and provides fast descriptor matching without requiring decompression. By demonstrating how to apply our method to the commonly used SIFT, SURF and GLOH descriptors, we show its effectiveness in reducing size and increasing accuracy. In all cases, we reduce the size of the descriptor by an order of magnitude and achieve higher accuracy at a detection rate of 95%.

[1]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[2]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[3]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[4]  Joachim M. Buhmann,et al.  Non-parametric similarity measures for unsupervised texture segmentation and image retrieval , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[6]  Konrad Tollmar,et al.  Searching the Web with mobile images for location recognition , 2004, CVPR 2004.

[7]  Keith Cheverst,et al.  Understanding the role of image recognition in mobile tour guides , 2005, Mobile HCI.

[8]  Gregory Shakhnarovich,et al.  Learning task-specific similarity , 2005 .

[9]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[11]  Xing Xie,et al.  Photo-to-Search: Using Camera Phones to Inquire of the Surrounding World , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[12]  Travis Gagie,et al.  Compressing probability distributions , 2005, Inf. Process. Lett..

[13]  Gang Hua,et al.  Discriminant Embedding for Local Image Descriptors , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Matthew A. Brown,et al.  Learning Local Image Descriptors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[16]  Bernd Girod,et al.  Outdoors augmented reality on mobile phone using loxel-based visual feature organization , 2008, MIR '08.

[17]  Chuohao Yeo,et al.  Rate-efficient visual correspondences using random projections , 2008, 2008 15th IEEE International Conference on Image Processing.

[18]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[19]  Bernd Girod,et al.  Transform coding of image feature descriptors , 2009, Electronic Imaging.

[20]  Bernd Girod,et al.  CHoG: Compressed histogram of gradients A low bit-rate feature descriptor , 2009, CVPR.

[21]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .