Neural Networks and the Financial Markets

[1]  Bruce I. Jacobs, Ph.D.,et al.  Disentangling Equity Return Regularities: New Insights and Investment Opportunities , 1987 .

[2]  F. Sortino,et al.  Performance Measurement in a Downside Risk Framework , 1994 .

[3]  M. Hatanaka On the Global Identification of the Dynamic Simultaneous Equations Model with Stationary Disturbances , 1975 .

[4]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[5]  Peter R. Winters,et al.  Forecasting Sales by Exponentially Weighted Moving Averages , 1960 .

[6]  Frank Gerhard,et al.  Multivariate market risk estimators: reliability and transaction costs in the context of portfolio selection , 2003 .

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  H. White,et al.  Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap , 1999 .

[9]  John C. W. Rayner,et al.  The comparison of sample covariance matrices using likelihood ratio tests , 1987 .

[10]  James H. Stock,et al.  Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors , 1987 .

[11]  A. Neil Burgess,et al.  Neural networks in financial engineering: a study in methodology , 1997, IEEE Trans. Neural Networks.

[12]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[13]  Giulia Iori,et al.  A Microsimulation of Traders Activity in the Stock Market: The Role of Heterogeneity, Agents' Interactions and Trade Frictions , 1999, adap-org/9905005.

[14]  E. Fama,et al.  Risk, Return, and Equilibrium: Empirical Tests , 1973, Journal of Political Economy.

[15]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[16]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[17]  Otto Loistl The Erroneous Approximation of Expected Utility by Means of a Taylor's Series Expansion: Analytic and Computational Results , 1976 .

[18]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[19]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[20]  Lawrence Fisher,et al.  Some New Stock-Market Indexes , 1966 .

[21]  N. Towers,et al.  Implementing Trading Strategies for Forecasting Models , 1999 .

[22]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[23]  K. French Stock returns and the weekend effect , 1980 .

[24]  C. Holt Author's retrospective on ‘Forecasting seasonals and trends by exponentially weighted moving averages’ , 2004 .

[25]  R. Haugen Modern investment theory , 1986 .

[26]  Everette S. Gardner,et al.  Exponential smoothing: The state of the art , 1985 .

[27]  John Matatko,et al.  Estimation risk and optimal portfolio choice , 1980 .

[28]  Edward I. George,et al.  Two Approaches to Bayesian Model Selection with Applications , 1996 .

[29]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[30]  Michael A. Saunders,et al.  Inertia-Controlling Methods for General Quadratic Programming , 1991, SIAM Rev..

[31]  Bruce E. Rosen,et al.  Ensemble Learning Using Decorrelated Neural Networks , 1996, Connect. Sci..

[32]  S. Weisberg Applied Linear Regression , 1981 .

[33]  A. Lo,et al.  Data-Snooping Biases in Tests of Financial Asset Pricing Models , 1989 .

[34]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[35]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[36]  Walter Hlawitschka,et al.  The Empirical Nature of Taylor-Series Approximations to Expected Utility , 1994 .

[37]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[38]  Andrei Shleifer Positive Feedback Investment Strategies , 2000 .

[39]  R. Lucas ASSET PRICES IN AN EXCHANGE ECONOMY , 1978 .

[40]  N. Sar Asset Allocation and the Investor’s Relative Risk Aversion , 1993 .

[41]  A. Lo,et al.  The Size and Power of the Variance Ratio Test in Finite Samples: a Monte Carlo Investigation , 1988 .

[42]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[43]  Masami Ito,et al.  Task decomposition and module combination based on class relations: a modular neural network for pattern classification , 1999, IEEE Trans. Neural Networks.

[44]  C. Chatfield,et al.  The M2-competition: A real-time judgmentally based forecasting study , 1993 .

[45]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[46]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[47]  Michael R. Gibbons,et al.  Day of the Week Effects and Asset Returns , 1981 .

[48]  Adrian Pagan,et al.  A note on the extraction of components from time series , 1975 .

[49]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[50]  D. Mackay,et al.  Bayesian methods for adaptive models , 1992 .

[51]  Lizhong Wu,et al.  Optimization of trading systems and portfolios , 1997, Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr).

[52]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[53]  R. Brown,et al.  Smoothing, Forecasting, and Prediction of Discrete Time Series , 1965 .

[54]  Thomas Ankenbrand,et al.  Agent Based Simulation of Multiple Financial Markets , 1997 .

[55]  L. Harris A transaction data study of weekly and intradaily patterns in stock returns , 1986 .

[56]  David H. Wolpert,et al.  On Bias Plus Variance , 1997, Neural Computation.

[57]  Shun-ichi Amari,et al.  Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.

[58]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[59]  O. Grandville Bond Pricing and Portfolio Analysis: Protecting Investors in the Long Run , 2000 .

[60]  Charles P. Jones,et al.  Can Tax-Loss Selling Explain the January Effect? A Note , 1987 .

[61]  Naonori Ueda,et al.  Generalization error of ensemble estimators , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[62]  Andreas S. Weigend,et al.  Nonlinear Trading Models Through Sharpe Ratio Maximization , 1997, Int. J. Neural Syst..

[63]  E. Fama,et al.  The Adjustment of Stock Prices to New Information , 1969 .

[64]  J. Muth Optimal Properties of Exponentially Weighted Forecasts , 1960 .

[65]  Neville Davies,et al.  Time Series Models, 2nd Edn. , 1995 .

[66]  Robert A. Jacobs,et al.  Methods For Combining Experts' Probability Assessments , 1995, Neural Computation.

[67]  D. Bertsimas,et al.  Optimal control of execution costs , 1998 .

[68]  Andrew D. Back,et al.  Discovering Structure in Finance Using Independent Component Analysis , 1998 .

[69]  Robert A. Levy,et al.  RELATIVE STRENGTH AS A CRITERION FOR INVESTMENT SELECTION , 1967 .

[70]  D. Lowe,et al.  Time series prediction by adaptive networks: a dynamical systems perspective , 1991 .

[71]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[72]  F. Takens Detecting strange attractors in turbulence , 1981 .

[73]  Anthony C. C. Coolen,et al.  Dynamical solution of the on-line minority game , 2001 .

[74]  Robert L. Winkler,et al.  The accuracy of extrapolation (time series) methods: Results of a forecasting competition , 1982 .

[75]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[76]  P. Dellaportas,et al.  Stochastic search variable selection for log-linear models , 2000 .

[77]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[78]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[79]  Marc R. Reinganum The anomalous stock market behavior of small firms in January: Empirical tests for tax-loss selling effects , 1983 .

[80]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[81]  D. Bunn,et al.  Statistical efficiency in the linear combination of forecasts , 1985 .

[82]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[83]  K. Wallis Multiple Time Series Analysis and the Final Form of Econometric Models , 1977 .

[84]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[85]  Phoebus J. Dhrymes,et al.  Distributed Lags:A Survey , 1972 .

[86]  加藤 清 Seasonal and size anomalies in the Japanese stock market , 1985 .

[87]  김경재,et al.  Intelligent Systems and Web Agents for Financial Forecasting = 재무예측을 위한 지능형 시스템과 웹 에이전트 , 2001 .

[88]  Masumi Ishikawa,et al.  Structural learning with forgetting , 1996, Neural Networks.

[89]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[90]  A. N. Burgess Non-linear model identification and statistical significance tests and their application to financial modelling , 1995 .

[91]  Giulia Iori,et al.  Avalanche Dynamics And Trading Friction Effects On Stock Market Returns , 1999 .

[92]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[93]  A. Lo,et al.  A Non-Random Walk Down Wall Street , 1999 .

[94]  Derek W. Bunn,et al.  Synthesis or selection of forecasting models , 1982 .

[95]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[96]  C. Granger,et al.  The Random Character of Stock Market Prices. , 1965 .

[97]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[98]  R. Thaler,et al.  Does the Stock Market Overreact , 1985 .

[99]  Robert M. Farber,et al.  How Neural Nets Work , 1987, NIPS.

[100]  J. Moody,et al.  Performance functions and reinforcement learning for trading systems and portfolios , 1998 .

[101]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[102]  Yoh-Han Pao,et al.  Stochastic choice of basis functions in adaptive function approximation and the functional-link net , 1995, IEEE Trans. Neural Networks.

[103]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[104]  J. Jobson,et al.  Estimation for Markowitz Efficient Portfolios , 1980 .