SAD phasing: History, current impact and future opportunities.

Single wavelength anomalous diffraction (SAD) can trace its beginnings to the early 1950s. Researchers at the time recognized that SAD offers some unique features that might be advantageous for crystallographic phasing, despite the fact that at that time recording accurate SAD data was problematic. In this review we will follow the trail from those early days, highlighting key advances in the field and interpreting them in terms on how they stimulated continued phasing development that produced the theoretical foundation for the routine macromolecular structure determination by SAD today. The technological advances over the past three decades in both hardware and software, which played a significant role in making SAD phasing a 'first choice method', will also be described.

[1]  K. Trueblood,et al.  Structure of Vitamin B12 : The Crystal Structure of the Hexacarboxylic Acid derived from B12 and the Molecular Structure of the Vitamin , 1955, Nature.

[2]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[3]  Michael Becker,et al.  Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. , 2011, Journal of synchrotron radiation.

[4]  Walter Hoppe,et al.  Freezing of myoglobin crystals at high pressure , 1973 .

[5]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[6]  H. Hauptman,et al.  A theory of phase determination for the four types of non-centrosymmetric space groups 1P222, 2P22, 3P12, 3P22 , 1956 .

[7]  Ezequiel Panepucci,et al.  Fast native-SAD phasing for routine macromolecular structure determination , 2014, Nature Methods.

[8]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[9]  Sylvie Doublié,et al.  Macromolecular Crystallography Protocols , 2007, Methods in Molecular Biology.

[10]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[11]  Kin Moy,et al.  Crystal Structure of Nonstructural Protein 10 from the Severe Acute Respiratory Syndrome Coronavirus Reveals a Novel Fold with Two Zinc-Binding Motifs , 2006, Journal of Virology.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  F. Crick,et al.  The treatment of errors in the isomorphous replacement method , 1959 .

[14]  M. Sugahara A Technique for High-Throughput Protein Crystallization in Ionically Cross-Linked Polysaccharide Gel Beads for X-Ray Diffraction Experiments , 2014, PloS one.

[15]  S. Raman Determination of the structure and absolute configuration of L(+)-lysine hydrochloride dihydrate by the anomalous-dispersion method , 1959 .

[16]  M. Jaskólski,et al.  Protein Crystallography , 2017, Methods in Molecular Biology.

[17]  C. Schulze-Briese,et al.  PRIGo: a new multi-axis goniometer for macromolecular crystallography , 2015, Journal of synchrotron radiation.

[18]  P. Tucker,et al.  Single isomorphous replacement phasing of selenomethionine-containing proteins using UV-induced radiation damage. , 2011, Acta crystallographica. Section D, Biological crystallography.

[19]  Ming Luo,et al.  The Southeast Collaboratory for Structural Genomics: a high-throughput gene to structure factory. , 2003, Accounts of chemical research.

[20]  Microcrystallography, high-pressure cryocooling and BioSAXS at MacCHESS , 2010, Journal of synchrotron radiation.

[21]  Alexander McPherson,et al.  Optimization of crystallization conditions for biological macromolecules. , 2014, Acta crystallographica. Section F, Structural biology communications.

[22]  J M Rosenberg,et al.  Structure of the DNA-Eco RI endonuclease recognition complex at 3 A resolution. , 1986, Science.

[23]  Olof Svensson,et al.  Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF , 2013, Journal of applied crystallography.

[24]  Michael G. Rossmann,et al.  The molecular replacement method : a collection of papers on the use of non-crystallographic symmetry , 1972 .

[25]  S. Nishikawa,et al.  Hemihedry of Zincblende and X-Ray Reflexion , 1928 .

[26]  Tao Zhang,et al.  Applications of direct methods in protein crystallography for dealing with diffraction data down to 5 Å resolution. , 2014, Acta crystallographica. Section A, Foundations and advances.

[27]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[28]  J. L. Smith,et al.  Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Victor S Lamzin,et al.  Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. , 2005, Acta crystallographica. Section D, Biological crystallography.

[30]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[31]  T. Prangé,et al.  On the Preparation and X-Ray Data-Collection of Isomorphous Xenon Derivatives , 1994 .

[32]  Uses of native anomalous scatterer in a protein structure determination , 1973 .

[33]  Takashi Kameshima,et al.  Native sulfur/chlorine SAD phasing for serial femtosecond crystallography , 2015, Acta crystallographica. Section D, Biological crystallography.

[34]  C. Stevenson,et al.  SAD at home: solving the structure of oxalate decarboxylase with the anomalous signal from manganese using X-ray data collected on a home source. , 2004, Acta crystallographica. Section D, Biological crystallography.

[35]  H. Walden,et al.  Selenium incorporation using recombinant techniques , 2010, Acta crystallographica. Section D, Biological crystallography.

[36]  Weixian Lu,et al.  A time- and cost-efficient system for high-level protein production in mammalian cells. , 2006, Acta crystallographica. Section D, Biological crystallography.

[37]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[38]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[39]  Manfred S. Weiss,et al.  Global indicators of X-ray data quality , 2001 .

[40]  R. Hamlin,et al.  Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 A. , 1985, Science.

[41]  G. N. Ramachandran,et al.  Anomalous Dispersion Method: Its Power for Protein Structure Analysis , 1965, Science.

[42]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[43]  John I. Robinson,et al.  SAD phasing using iodide ions in a high-throughput structural genomics environment , 2011, Journal of Structural and Functional Genomics.

[44]  H Toyokawa,et al.  The PILATUS 1M detector. , 2006, Journal of synchrotron radiation.

[45]  T. Prangé,et al.  Better structures from better data through better methods: a review of developments in de novo macromolecular phasing techniques and associated instrumentation at LURE , 1999 .

[46]  H. Guan,et al.  Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination , 2014, Acta crystallographica. Section D, Biological crystallography.

[47]  T. Creighton Methods in Enzymology , 1968, The Yale Journal of Biology and Medicine.

[48]  W. Hendrickson,et al.  Multi-crystal native SAD analysis at 6 keV. , 2014, Acta crystallographica. Section D, Biological crystallography.

[49]  N. Watanabe From phasing to structure refinement in-house: Cr/Cu dual-wavelength system and a loopless free crystal-mounting method. , 2006, Acta crystallographica. Section D, Biological crystallography.

[50]  Victor S Lamzin,et al.  On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. , 2009, Acta crystallographica. Section D, Biological crystallography.

[51]  Wayne A. Hendrickson,et al.  Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data , 2013, Acta crystallographica. Section D, Biological crystallography.

[52]  Jennifer L Wierman,et al.  Graphene as a protein crystal mounting material to reduce background scatter. , 2013, Journal of applied crystallography.

[53]  Randy J. Read,et al.  Evolving Methods for Macromolecular Crystallography , 2007 .

[54]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[55]  Sean McSweeney,et al.  Specific radiation damage can be used to solve macromolecular crystal structures. , 2003, Structure.

[56]  J. C. Kendrew,et al.  The crystal structure of myoglobin: Phase determination to a resolution of 2 Å by the method of isomorphous replacement , 1961 .

[57]  T. Teng,et al.  Mounting of crystals for macromolecular crystallography in a free-standing thin film , 1990 .

[58]  A. North,et al.  The combination of isomorphous replacement and anomalous scattering data in phase determination of non-centrosymmetric reflexions , 1965 .

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[61]  P. Sun,et al.  Generating isomorphous heavy-atom derivatives by a quick-soak method. Part I: test cases. , 2002, Acta crystallographica. Section D, Biological crystallography.

[62]  D. Coster,et al.  Unterschiede in der Intensität der Röntgenstrahlen-reflexion an den beiden 111-Flächen der Zinkblende , 1930 .

[63]  E. Garman,et al.  Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. , 2013, Journal of synchrotron radiation.

[64]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[66]  S. Alavi Molecular simulations , 1998, Current Biology.

[68]  R. Ravelli,et al.  Phasing macromolecular structures with UV-induced structural changes. , 2006, Structure.

[69]  J. Rose,et al.  Structure of the Ca2+‐regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure , 2000, Protein science : a publication of the Protein Society.

[70]  Wayne A Hendrickson,et al.  Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP , 2013, Nature Structural &Molecular Biology.

[71]  P. Andrew Karplus,et al.  Improved R-factors for diffraction data analysis in macromolecular crystallography , 1997, Nature Structural Biology.

[72]  W. Hendrickson,et al.  An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO. , 2012, Structure.

[73]  A. Herzenberg,et al.  Anomalous scattering and the phase problem , 1967 .

[74]  Lirong Chen,et al.  A multi-dataset data-collection strategy produces better diffraction data , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[75]  David Blow,et al.  Direct Methods In Crystallography , 1962 .

[76]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[77]  Manfred S Weiss,et al.  On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. , 2005, Acta crystallographica. Section D, Biological crystallography.

[78]  J. Rose,et al.  Crystal structure of the transcription factor sc‐mtTFB offers insights into mitochondrial transcription , 2001, Protein science : a publication of the Protein Society.

[79]  Randy J. Read,et al.  Advancing Methods for Biomolecular Crystallography , 2013 .

[80]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[81]  A. McCoy,et al.  Macromolecular X-ray structure determination using weak single-wavelength anomalous data , 2014, Nature Methods.

[82]  Z Dauter,et al.  Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. , 2000, Acta crystallographica. Section D, Biological crystallography.

[83]  Raimond B G Ravelli,et al.  Improving radiation-damage substructures for RIP. , 2005, Acta crystallographica. Section D, Biological crystallography.

[84]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .

[85]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[86]  F Cipriani,et al.  Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. , 1999, Acta crystallographica. Section D, Biological crystallography.

[87]  J. Helliwell,et al.  The interdependence of wavelength, redundancy and dose in sulfur SAD experiments. , 2008, Acta crystallographica. Section D, Biological crystallography.

[88]  D. Stuart,et al.  Pushing the limits of sulfur SAD phasing: de novo structure solution of the N-terminal domain of the ectodomain of HCV E1 , 2014, Acta crystallographica. Section D, Biological crystallography.

[89]  J. Tanner,et al.  MRSAD: using anomalous dispersion from S atoms collected at Cu Kalpha wavelength in molecular-replacement structure determination. , 2003, Acta crystallographica. Section D, Biological crystallography.

[90]  Christian Morawe,et al.  The ID23-2 structural biology microfocus beamline at the ESRF , 2009, Journal of synchrotron radiation.

[91]  J. Rose,et al.  Native SAD is maturing , 2015, IUCrJ.

[92]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[93]  D. Stuart,et al.  Structure determination from a single high-pressure-frozen virus crystal. , 2013, Acta crystallographica. Section D, Biological crystallography.

[94]  Elspeth F. Garman,et al.  Radiation damage in macromolecular crystallography: what is it and why should we care? , 2010, Acta crystallographica. Section D, Biological crystallography.

[95]  E. Stura,et al.  Strategies for Protein Cryocrystallography , 2014 .

[96]  Robert Huber,et al.  Ta6Br122+, a tool for phase determination of large biological assemblies by X-ray crystallography , 1997 .

[97]  E. Garman,et al.  Heavy-atom derivatization. , 2003, Acta crystallographica. Section D, Biological crystallography.

[98]  S. Doublié Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. , 2007, Methods in molecular biology.

[99]  B. Matthews,et al.  Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[100]  G. Skiniotis,et al.  Flavivirus NS1 Structures Reveal Surfaces for Associations with Membranes and the Immune System , 2014, Science.

[101]  J. Rose,et al.  The octameric histone core of the nucleosome. Structural issues resolved. , 1994, Journal of molecular biology.

[102]  Bi Cheng Wang,et al.  Away from the edge II: in-house Se-SAS phasing with chromium radiation. , 2005, Acta crystallographica. Section D, Biological crystallography.

[103]  Sandor Brockhauser,et al.  Predicting the X-ray lifetime of protein crystals , 2013, Proceedings of the National Academy of Sciences.

[104]  Randy J. Read,et al.  Using SAD data in Phaser , 2011, Acta crystallographica. Section D, Biological crystallography.

[105]  Michael G. Rossmann,et al.  The single isomorphous replacement method , 1961 .

[106]  R. Ravelli,et al.  The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments , 2013, Acta crystallographica. Section D, Biological crystallography.

[107]  N. Duke,et al.  Is your cold-stream working for you or against you? An in-depth look at temperature and sample motion , 2008 .

[108]  Y. Okaya,et al.  New Method in X-Ray Crystal Structure Determination Involving the Use of Anomalous Dispersion , 1955 .

[109]  J. Deisenhofer,et al.  'MAD'ly phasing the extracellular domain of the LDL receptor: a medium-sized protein, large tungsten clusters and multiple non-isomorphous crystals. , 2003, Acta crystallographica. Section D, Biological crystallography.

[110]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Bijvoet,et al.  The indexing of reflexions in investigations involving the use of the anomalous scattering effect , 1956 .

[112]  Alexander McPherson,et al.  Introduction to protein crystallization. , 2014, Acta crystallographica. Section F, Structural biology communications.

[113]  E. Garman,et al.  Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. , 2011, Journal of synchrotron radiation.

[114]  J. Rose,et al.  The 2.0 Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis , 2001, Nature Structural Biology.

[115]  Yiping Feng,et al.  Goniometer-based femtosecond crystallography with X-ray free electron lasers , 2014, Proceedings of the National Academy of Sciences.

[116]  S. Ragsdale,et al.  Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. , 2008, Biochemistry.

[117]  N. Duke,et al.  Testing commercial protein crystallography sample mounting loops for movement in a cold‐stream , 2013 .

[118]  G. Sheldrick,et al.  A magic triangle for experimental phasing of macromolecules. , 2008, Acta crystallographica. Section D, Biological crystallography.

[119]  M. Sundaralingam,et al.  Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. , 1985, Science.

[120]  J. L. Smith,et al.  Multiwavelength anomalous diffraction as a direct phasing vehicle in macromolecular crystallography. , 1989, Basic life sciences.

[121]  H. Hauptman,et al.  The phases and magnitudes of the structure factors , 1950 .

[122]  J. Rose,et al.  Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[123]  B. W. Mathews,et al.  The determination of the position of anomalously scattering heavy atom groups in protein crystals , 1966 .

[124]  Nobuhisa Watanabe,et al.  Semi‐automated protein crystal mounting device for the sulfur single‐wavelength anomalous diffraction method , 2010 .

[125]  G. Petsko Preparation of isomorphous heavy-atom derivatives. , 1985, Methods in enzymology.

[126]  R. Ravelli,et al.  Radiation damage in macromolecular cryocrystallography. , 2006, Current opinion in structural biology.

[127]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[128]  M. Woolfson,et al.  Physical and Non-Physical Methods of Solving Crystal Structures , 1995 .

[129]  A. D'arcy,et al.  Microseed matrix screening for optimization in protein crystallization: what have we learned? , 2014, Acta crystallographica. Section F, Structural biology communications.

[130]  J. Bijvoet,et al.  Determination of the Absolute Configuration of Optically Active Compounds by Means of X-Rays , 1951, Nature.