Multiparametric importance sampling for simulation of radar systems

The performances of the importance sampling (IS) techniques are improved by using multiparametric distortions of the input random processes. The analysis of different constant false-alarm rate (CFAR) algorithms confirms the usefulness of this method. The potential of this new approach is fully exploited if optimization techniques are used to obtain the optimum distortions and to avoid bias in the estimates.

[1]  Michel C. Jeruchim,et al.  Techniques for Estimating the Bit Error Rate in the Simulation of Digital Communication Systems , 1984, IEEE J. Sel. Areas Commun..

[2]  James R. Wilson Variance Reduction Techniques for Digital Simulation , 1984 .

[3]  Michael R. Frater,et al.  Optimally efficient estimation of the statistics of rare events in queueing networks , 1991 .

[4]  Michel C. Jeruchim,et al.  On optimum and suboptimum biasing procedures for importance sampling in communication simulation , 1990, IEEE Trans. Commun..

[5]  R.L. Mitchell Importance Sampling Applied to Simulation of False Alarm Statistics , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[7]  Barry L. Nelson,et al.  Variance reduction for simulation practitioners , 1987, WSC '87.

[8]  Kung Yao,et al.  Improved importance sampling technique for efficient simulation of digital communication systems , 1988, IEEE J. Sel. Areas Commun..

[9]  Michel C. Jeruchim,et al.  An experimental investigation of conventional and efficient importance sampling , 1989, IEEE Trans. Commun..

[10]  P. Balaban,et al.  A Modified Monte-Carlo Simulation Technique for the Evaluation of Error Rate in Digital Communication Systems , 1980, IEEE Trans. Commun..

[11]  J.S. Sadowsky,et al.  On large deviations theory and asymptotically efficient Monte Carlo estimation , 1990, IEEE Trans. Inf. Theory.

[12]  Timothy N. Trick,et al.  A Study of Variance Reduction Techniques for Estimating Circuit Yields , 1983, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[13]  Michael Devetsikiotis,et al.  Importance Sampling Methodologies for Simulation of Communication Systems with Time-Varying Channels and Adaptive Equalizers , 1993, IEEE J. Sel. Areas Commun..

[14]  H. M. Finn,et al.  Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates , 1968 .

[15]  Hermann Rohling,et al.  Radar CFAR Thresholding in Clutter and Multiple Target Situations , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[17]  K. Sam Shanmugan,et al.  Simulation of Communication Systems , 1992 .

[18]  Khurram Muhammad,et al.  An efficient new technique for accurate bit error probability estimation of ZJ decoders , 1995, IEEE Trans. Commun..

[19]  J. Grajal,et al.  Simulation of CFAR algorithms via graphical control of importance sampling techniques , 1996, Proceedings of the 1996 IEEE National Radar Conference.

[20]  G. W. Lank Theoretical aspects of importance sampling applied to false alarms , 1983, IEEE Trans. Inf. Theory.

[21]  Kung Yao,et al.  On Importance Sampling in Digital Communications - Part I: Fundamentals , 1993, IEEE J. Sel. Areas Commun..