On the global well-posedness of the Euler-Boussinesq system with fractional dissipation

Abstract We study the global well-posedness of the Euler–Boussinesq system with the term dissipation | D | α on the temperature equation. We prove that for α > 1 the coupled system has a global unique solution for initial data with critical regularities.

[1]  Taoufik Hmidi,et al.  On the global well-posedness of the Boussinesq system with zero viscosity , 2007, 0711.3198.

[2]  M. Oliver The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$ , 2002 .

[3]  J. Chemin,et al.  Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .

[4]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[5]  R. Danchin,et al.  Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich’s Type Data , 2008, 0806.4081.

[6]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[7]  T. Hmidi,et al.  On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity , 2007, Advances in Differential Equations.

[8]  Qionglei Chen,et al.  A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation , 2006 .

[9]  P. Constantin,et al.  Non-planar fronts in Boussinesq reactive flows , 2004, math/0407303.

[10]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[11]  Taoufik Hmidi,et al.  On the Global Well-Posedness of the Critical Quasi-Geostrophic Equation , 2008, SIAM J. Math. Anal..

[12]  W. Woyczynski Lévy Processes in the Physical Sciences , 2001 .

[13]  Dongho Chae,et al.  Local existence and blow‐up criterion for the Euler equations in the Besov spaces , 2004 .

[14]  Yann Brenier,et al.  Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations , 2008, J. Nonlinear Sci..

[15]  Thomas Y. Hou,et al.  GLOBAL WELL-POSEDNESS OF THE VISCOUS BOUSSINESQ EQUATIONS , 2004 .

[16]  M. Oliver THE LAGRANGIAN AVERAGED EULER EQUATIONS AS THE SHORT-TIME INVISCID LIMIT OF THE NAVIER–STOKES EQUATIONS WITH BESOV CLASS DATA IN R , 2003 .

[17]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[18]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[19]  Yanguang Charles Li Global Regularity for the Viscous Boussinesq Equations , 2003 .

[20]  Wojbor A. Woyczyński,et al.  Fractal Hamilton-Jacobi-KPZ equations , 2006 .

[21]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[22]  E Weinan,et al.  Small‐scale structures in Boussinesq convection , 1998 .

[23]  H. Triebel Theory Of Function Spaces , 1983 .

[24]  Consejo Superior,et al.  A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[25]  P. Constantin,et al.  On the critical dissipative quasi-geostrophic equation , 2001 .

[26]  F. Rousset,et al.  Global well-posedness for a Boussinesq- Navier-Stokes System with critical dissipation , 2009, 0904.1536.

[27]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[28]  Dongho Chae,et al.  Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .

[29]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[30]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[31]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[32]  M. Vishik,et al.  Hydrodynamics in Besov Spaces , 1998 .

[33]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[34]  Katarzyna Sznajd-Weron,et al.  Anomalous Diffusion From Basics to Applications , 1999 .

[35]  Taoufik Hmidi,et al.  Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces , 2006, math/0611494.

[36]  T. Hmidi Régularité höldérienne des poches de tourbillon visqueuses , 2004 .

[37]  Marius Paicu,et al.  GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO , 2008, 0809.4984.

[38]  P. Clavin Instabilities and Nonlinear Patterns of Overdriven Detonations in Gases , 2002 .