Neural networks study on the correlation between impact sensitivity and molecular structures for nitramine explosives

In this paper, a back-propagation neural network has been utilized to study on the correlation between impact sensitivity and molecular properties of 33 nitramine molecules. By using density functional theory method B3P86/6-31G**, all the molecular properties have been calculated. Eight different sets of molecular properties, including (HOMO−LUMO)*BDE, E, BDE/E, HOMO−LUMO, BDE*μ, R2, ΔE, and BDE, have been used to train and test the network. Based on the test results, the correlation order between the molecular properties and impact sensitivity has been achieved. The correlation order shows that the input set with the descriptor ΔE(atomization energy) can obtain better results than any other descriptor for nitriamines, which surely accounts for a comparatively stronger correlation between ΔE(atomization energy) and impact sensitivity for nitramines we have studied in this work.

[1]  A. Delpuech,et al.  Relation entre la Structure Electronique et la Sensibilité au Choc des Explosifs Secondaires Nitrés-Critère Moléculaire de Sensibilité. I. Cas des Nitroaromatiques et des Nitramines , 1978 .

[2]  A. Delpuech,et al.  Relation entre La Structure Electronique et la Sensibilité au Choc des Explosifs Secondaires Nitrés. III. Influence de l'environnement cristallin , 1979 .

[3]  M. J. Kamlet,et al.  The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives , 1979 .

[4]  A. Delpuech,et al.  Relation entre La Structure Electronique et la Sensibilité au Choc des Explosifs Secondaires Nitrés. Critère Moléculaire de Sensibilité II. Cas des esters nitriques , 1979 .

[5]  P. Politzer,et al.  Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules , 1985 .

[6]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[7]  Atsumi Miyake,et al.  Sensitivity and Evaluation of Explosive Substances , 1986 .

[8]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[9]  J. Mullay Relationships between Impact Sensitivity and Molecular Electronic Structure , 1987 .

[10]  J. Mullay A Relationship between Impact Sensitivity and Molecular Electronegativity , 1987 .

[11]  S. Jain Energetics of Propellants, Fuels and Explosives; a chemical valence approach , 1987 .

[12]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[13]  J. Murray,et al.  A relationship between impact sensitivity and the electrostatic potentials at the midpoints of CNO2 bonds in nitroaromatics , 1990 .

[14]  S. Bulusu Chemistry and physics of energetic materials , 1990 .

[15]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Murray,et al.  Shock-sensitivity relationships for nitramines and nitroaliphatics , 1991 .

[17]  B. R. Upadhyaya,et al.  Application of neural network computing to the solution for the ground-state eigenenergy of two-dimensional harmonic oscillators , 1991 .

[18]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[19]  L. Fried,et al.  Energy transfer rates in primary, secondary, and insensitive explosives , 1994 .

[20]  F. Owens Calculation of energy barriers for bond rupture in some energetic molecules , 1996 .

[21]  Jean-Michel Cense,et al.  Prediction of the Impact Sensitivity by Neural Networks , 1996, J. Chem. Inf. Comput. Sci..

[22]  Theoretical study on pyrolysis and sensitivity of energetic compounds. (2) Nitro derivatives of benzene , 1996 .

[23]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[24]  C. S. Coffey,et al.  Spectroscopic Determination of Impact Sensitivities of Explosives. , 1997 .

[25]  D. Fotiadis,et al.  Artificial neural network methods in quantum mechanics , 1997, quant-ph/9705029.

[26]  P. H. Acioli,et al.  Estimating correlation energy of diatomic molecules and atoms with neural networks , 1997, Journal of Computational Chemistry.

[27]  Theoretical study on pyrolysis and sensitivity of energetic compounds. Part 4. Nitro derivatives of phenols , 1998 .

[28]  Theoretical study on pyrolysis and sensitivity of energetic compounds: (3) Nitro derivatives of aminobenzenes , 1998 .

[29]  L. Morin-Allory,et al.  Prediction of Explosives Impact Sensitivity , 1998 .

[30]  Heming Xiao,et al.  Impact sensitivity and activation energy of pyrolysis for tetrazole compounds , 2000 .

[31]  B. Rice,et al.  A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules , 2002 .

[32]  B. Rice,et al.  Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules , 2002 .

[33]  S. Zeman,et al.  New Aspects of Impact Reactivity of Polynitro Compounds, Part III. Impact Sensitivity as a Function of the Imtermolecular Interactions , 2003 .

[34]  Boris Johnson-Restrepo,et al.  Molecular Parameters Responsible for the Melting Point of 1, 2, 3-Diazaborine Compounds , 2003, J. Chem. Inf. Comput. Sci..

[35]  Lihong Hu,et al.  Combined first-principles calculation and neural-network correction approach for heat of formation , 2003 .

[36]  Correlation between sensitivity and approximated heats of detonation of several nitroamines using quantum mechanical methods , 2004 .

[37]  K. No,et al.  Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules , 2005 .

[38]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.