Context Representation in Domain Ontologies and Its Use for Semantic Integration of Data

The goal of this paper is to identify various aspects of context-awareness needed to facilitate semantics integration of data, and to discuss how this knowledge may be represented within ontologies. We first present a taxonomy of ontologies and we show how various kinds of ontologies may cooperate. Then, we compare ontologies and conceptual models. We claim that their main difference is the consensual nature of ontologies when conceptual models are specifically designed for one particular target system. Reaching consensus, in turn, needs specific models of which context dependency has been represented and minimized. We identify five principles for making ontologies less contextual than models and suitable for data integration and we show, as an example, how these principles have been implemented in the PLIB ontology model developed for industrial data integration. Finally, we suggest a road map for switching from conventional databases to ontology-based databases without waiting until standard ontologies are available in every domains.

[1]  N. F. Noy,et al.  Ontology Development 101: A Guide to Creating Your First Ontology , 2001 .

[2]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[3]  Yamine Aït Ameur,et al.  Exploitation of Ontology Languages for Both Persistence and Reasoning Purposes - Mapping PLIB, OWL and Flight Ontology Models , 2007, WEBIST.

[4]  Heiner Stuckenschmidt,et al.  Intelligent Brokering of Environmental Information with the BUSTER System , 2001, Wirtschaftsinformatik.

[5]  François Goasdoué,et al.  The Use of CARIN Language and Algorithms for Information Integration: The PICSEL System , 2000, Int. J. Cooperative Inf. Syst..

[6]  Ladjel Bellatreche,et al.  Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases , 2006, Comput. Ind..

[7]  Yamine Aït Ameur,et al.  Querying Ontology Based Database Using OntoQL (An Ontology Query Language) , 2006, OTM Conferences.

[8]  Vipul Kashyap,et al.  Managing Multiple Information Sources through Ontologies: Relationship between Vocabulary Heterogeneity and Loss of Information , 1996, KRDB.

[9]  Stuart E. Madnick,et al.  Working Paper Alfred P. Sloan School of Management Database Systems in a Dynamic Environment Database Systems in a Dynamic Environment Received Context Interchange: Overcoming the Challenges of Large-scale Interoperable Database Systems in a Dynamic Environment* , 2022 .

[10]  Gio Wiederhold,et al.  Mediators in the architecture of future information systems , 1992, Computer.

[11]  Vipul Kashyap,et al.  Semantic and schematic similarities between database objects: a context-based approach , 1996, The VLDB Journal.

[12]  Amit P. Sheth,et al.  Management of heterogeneous and autonomous database systems , 1998 .

[13]  Daniel G. Bobrow,et al.  Making ontologies work for resolving redundancies across documents , 2002, CACM.

[14]  Douglas A. Schenck,et al.  Information modeling: the EXPRESS way , 1994 .

[15]  Marvin Minsky,et al.  Matter, Mind and Models , 1965 .

[16]  Nicola Guarino,et al.  Evaluating ontological decisions with OntoClean , 2002, CACM.

[17]  Ladjel Bellatreche,et al.  Bases de données à base ontologique. Principe et mise en oeuvre , 2005, Ingénierie des Systèmes d Inf..

[18]  G. Pierra,et al.  A Multiple Perspective Object Oriented Model for Engineering Design , 2002 .

[19]  Ian Horrocks,et al.  OIL: An Ontology Infrastructure for the Semantic Web , 2001, IEEE Intell. Syst..

[20]  Ladjel Bellatreche,et al.  OntoDB: An Ontology-Based Database for Data Intensive Applications , 2007, DASFAA.

[21]  Stéphane Bressan,et al.  Context Interchange: New Features and Formalisms for the Intelligent Integration of Information Context Interchange: New Features and Formalisms for the Intelligent Integration of Information , 1997 .

[22]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[23]  Martin L. Kersten,et al.  A Graph-Oriented Model for Articulation of Ontology Interdependencies , 1999, EDBT.

[24]  Philip A. Bernstein,et al.  A vision for management of complex models , 2000, SGMD.

[25]  Yamine Aït Ameur,et al.  Domain Ontologies: A Database-Oriented Analysis , 2006, WEBIST.

[26]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[27]  Frank van Harmelen,et al.  Contextualizing ontologies , 2004, J. Web Semant..

[28]  Arnon Rosenthal,et al.  Using semantic values to facilitate interoperability among heterogeneous information systems , 1994, TODS.

[29]  Klaus R. Dittrich,et al.  User-Specific Semantic Integration of Heterogeneous Data: The SIRUP Approach , 2004, ICSNW.

[30]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[31]  Diego Calvanese,et al.  A Principled Approach to Data Integration and Reconciliation in Data Warehousing , 1999, DMDW.

[32]  Guy Pierra An Object Oriented Approach to Ensure Portability of CAD Standard parts Libraries , 1990, Eurographics.