Robust Kernel Embedding of Conditional and Posterior Distributions with Applications

This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.

[1]  Mark Girolami,et al.  Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem , 2002, Neural Computation.

[2]  Patricio A. Vela,et al.  Robust Density Comparison for Visual Tracking , 2009, BMVC.

[3]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[4]  Le Song,et al.  Kernel Bayes' Rule , 2010, NIPS.

[5]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  H LampertChristoph,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014 .

[7]  Shaogang Gong,et al.  Zero-shot object recognition by semantic manifold distance , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[9]  Philip H. S. Torr,et al.  An embarrassingly simple approach to zero-shot learning , 2015, ICML.

[10]  Amit R.Sharma,et al.  Face Photo-Sketch Synthesis and Recognition , 2012 .

[11]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[12]  P. Vela,et al.  Robust Density Comparison Using Eigenvalue Decomposition , 2012 .

[13]  Alexander J. Smola,et al.  Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.

[14]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[15]  Le Song,et al.  Robust Low Rank Kernel Embeddings of Multivariate Distributions , 2013, NIPS.

[16]  Le Song,et al.  Hilbert Space Embeddings of Hidden Markov Models , 2010, ICML.

[17]  Bernhard Schölkopf,et al.  Learning from Distributions via Support Measure Machines , 2012, NIPS.

[18]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Tomoharu Iwata,et al.  Latent Support Measure Machines for Bag-of-Words Data Classification , 2014, NIPS.