Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics".

[1]  Y. Oaki,et al.  Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3 , 2014 .

[2]  Oktay Yarimaga,et al.  Polydiacetylenes: supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. , 2012, Chemical communications.

[3]  S. Weiner,et al.  Choosing the Crystallization Path Less Traveled , 2005, Science.

[4]  Fabio Nudelman,et al.  Biomineralization as an inspiration for materials chemistry. , 2012, Angewandte Chemie.

[5]  A. Gaharwar,et al.  Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. , 2011, Biomacromolecules.

[6]  N. Sommerdijk,et al.  Lessons from Nature—Biomimetic Approaches to Minerals with Complex Structures , 2010 .

[7]  J. Lu,et al.  Controllable stabilization of poly(N-isopropylacrylamide)-based microgel films through biomimetic mineralization of calcium carbonate. , 2012, Biomacromolecules.

[8]  R. Zhuo,et al.  Strategies to improve the response rate of thermosensitive hydrogels. , 2008, Soft matter.

[9]  L. Gower,et al.  Polymer-Induced Liquid-Precursor (PILP) Process in the Non-Calcium Based Systems of Barium and Strontium Carbonate , 2010 .

[10]  S. Mann,et al.  Hybrid Biocomposites Based on Calcium Phosphate Mineralization of Self‐Assembled Supramolecular Hydrogels , 2006 .

[11]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[12]  Arno Seeboth,et al.  Thermochromic polymers--function by design. , 2014, Chemical reviews.

[13]  F. Meldrum,et al.  Controlling mineral morphologies and structures in biological and synthetic systems. , 2008, Chemical reviews.

[14]  Nico A. J. M. Sommerdijk,et al.  Biomineralisation als Inspirationsquelle für die Materialchemie , 2012 .

[15]  Jong-Man Kim,et al.  Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors. , 2008, Accounts of chemical research.

[16]  Minyung Lee,et al.  Comparative analysis on the nanoindentation of polymers using atomic force microscopy , 2010 .

[17]  Z. Seh,et al.  Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization , 2012 .

[18]  Satoshi Kajiyama,et al.  Aragonite nanorods in calcium carbonate/polymer hybrids formed through self-organization processes from amorphous calcium carbonate solution. , 2014, Small.

[19]  L. Skibsted,et al.  Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage , 1997 .

[20]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[21]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[22]  S. Weiner,et al.  Asprich: A Novel Aspartic Acid‐Rich Protein Family from the Prismatic Shell Matrix of the Bivalve Atrina rigida , 2005, Chembiochem : a European journal of chemical biology.

[23]  S. Mann,et al.  In situ precipitation of amorphous and crystalline calcium sulphates in cellulose thin films , 2014 .

[24]  Y. Oaki,et al.  Nanosegregated Amorphous Composites of Calcium Carbonate and an Organic Polymer , 2008 .

[25]  L. Bergström,et al.  A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. , 2011, Nanoscale.

[26]  H. Möhwald,et al.  A Bio-inspired Route to Fabricate Submicrometer-Sized Particles with Unusual Shapes - Mineralization of Calcium Carbonate within Hydrogel Spheres , 2005 .

[27]  D. Faivre,et al.  Synthesis and Characterization of Gelatin-Based Magnetic Hydrogels , 2014, Advanced functional materials.

[28]  T. A. Hatton,et al.  Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. , 2004, International journal of pharmaceutics.

[29]  L. Gower Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. , 2008, Chemical reviews.

[30]  D. Tirrell,et al.  Calcium carbonate films and helices grown in solutions of poly(aspartate) , 1998 .

[31]  L. Gower,et al.  Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase , 2008 .

[32]  S. Weiner,et al.  Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. , 2013, Angewandte Chemie.