ElecSus: Extension to arbitrary geometry magneto-optics

Abstract We present a major update to ElecSus, a computer program and underlying model to calculate the electric susceptibility of an alkali-metal atomic vapour. Knowledge of the electric susceptibility of a medium is essential to predict its absorptive and dispersive properties. In this version we implement several changes which significantly extend the range of applications of ElecSus, the most important of which is support for non-axial magnetic fields (i.e. fields which are not aligned with the light propagation axis). Supporting this change requires a much more general approach to light propagation in the system, which we have now implemented. We exemplify many of these new applications by comparing ElecSus to experimental data. In addition, we have developed a graphical user interface front-end which makes the program much more accessible, and have improved on several other minor areas of the program structure. Program summary Program Title: ElecSus Program Files doi: http://dx.doi.org/10.17632/h7cj8bz4bd.1 Licensing provisions: Apache License, Version 2.0 Programming language: Python External routines/libraries: SciPy library [1] 0.15.0 or later, NumPy [1], matplotlib [2], sympy [3], lmfit 0.9.5 or later [4], wxpython (required for GUI only) Nature of problem: Calculating the weak-probe electric susceptibility of an alkali-metal vapour. The electric susceptibility can be used to calculate spectra such as transmission and Stokes parameters. Measurements of experimental parameters can be made by fitting the theory to data. Solution method: The transition frequencies and wavelengths are calculated using a matrix representation of the Hamiltonian in the completely uncoupled basis. A suite of fitting methods are provided in order to allow user supplied experimental data to be fit to the theory, thereby allowing experimental parameters to be extracted. Restrictions: Results are only valid in the weak-probe regime. [1] T. E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/ [2] J. D. Hunter, Comput. Sci. Eng. 9, 10 (2007). http://matplotlib.org/ [3] A. Meurer et. al, PeerJ Comp. Sci. 3, e103 (2017) http://www.sympy.org/ [4] M. Newville et al., LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, Zenodo (2014). DOI:10.5281/zenodo.11813 https://lmfit.github.io/lmfit-py/

[1]  S. Knappe,et al.  Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime. , 2012, Optics letters.

[2]  Mark A. Zentile,et al.  ElecSus: A program to calculate the electric susceptibility of an atomic ensemble , 2014, Comput. Phys. Commun..

[3]  Andreas Rudolf,et al.  High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration. , 2012, Optics letters.

[4]  Svenja Knappe,et al.  Microfabricated Optically-Pumped Magnetometers for Biomagnetic Applications , 2016 .

[5]  S. Knappe,et al.  Absolute absorption and dispersion of a rubidium vapour in the hyperfine Paschen–Back regime , 2012, 1208.1879.

[6]  Gaetano Mileti,et al.  A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation , 2005 .

[7]  I. Walmsley,et al.  In situ characterization of an optically thick atom-filled cavity , 2015, 1511.05448.

[8]  Permanent magnets for Faraday rotators inspired by the design of the magic sphere. , 2011, Applied optics.

[9]  Andrew Horsley,et al.  Frequency-Tunable Microwave Field Detection in an Atomic Vapor Cell , 2016, 1604.05526.

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  A. Luiten,et al.  Atomic spectroscopy for primary thermometry , 2015 .

[12]  J. Keaveney,et al.  Electromagnetically induced absorption in a nondegenerate three-level ladder system. , 2015, Optics letters.

[13]  M. Mitchell,et al.  Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics. , 2014, Optics express.

[14]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[15]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  C. Joachain,et al.  Physics of atoms and molecules , 1982 .

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  W. Happer,et al.  Optical pumping and spectroscopy of Cs vapor at high magnetic field , 2011 .

[20]  C. Leroy,et al.  Hyperfine Paschen–Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment , 2013, 1309.5775.

[21]  C. Adams,et al.  Faraday dichroic beam splitter for Raman light using an isotopically pure alkali-metal-vapor cell. , 2009, Optics letters.

[22]  S. Franke-Arnold,et al.  Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. , 2012, Physical review letters.

[23]  Charles S. Adams,et al.  Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking , 2002 .

[24]  S Franke-Arnold,et al.  Enhanced frequency up-conversion in Rb vapor. , 2010, Optics express.

[25]  Joshua Nunn,et al.  Quantum memories: emerging applications and recent advances , 2015, Journal of modern optics.

[26]  V. Vítek,et al.  Dislocations and stacking faults , 1970 .

[27]  C. Adams,et al.  Selective reflection from an Rb layer with a thickness below λ/12 and applications. , 2017, Optics letters.

[28]  C. Leroy,et al.  Decoupling of hyperfine structure of Cs D_1 line in strong magnetic field studied by selective reflection from a nanocell , 2016, 1610.09807.

[29]  I. Hughes,et al.  How weak is a weak probe in laser spectroscopy , 2009 .

[30]  D. Anderson,et al.  Paschen-Back effects and Rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency , 2017, 1702.05556.

[31]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[32]  J. Keaveney,et al.  A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz. , 2016, The Review of scientific instruments.

[33]  Ifan G. Hughes,et al.  Measurements and their Uncertainties: A practical guide to modern error analysis , 2010 .

[34]  Charles S. Adams,et al.  ARC: An open-source library for calculating properties of alkali Rydberg atoms , 2016, Comput. Phys. Commun..

[35]  S. Cornish,et al.  Absolute absorption on the potassium D lines: theory and experiment , 2015, 1506.06651.

[36]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[37]  J. Keaveney,et al.  Cooperative interactions in dense thermal Rb vapour confined in nm-scale cells , 2013 .

[38]  Xingwu Long,et al.  Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light , 2016, Scientific Reports.

[39]  Svenja Knappe,et al.  Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique , 2007 .

[40]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[41]  C. Adams,et al.  Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields , 2011, 1112.3912.

[42]  E. Palik,et al.  Infrared and microwave magnetoplasma effects in semiconductors , 1970 .

[43]  S. Knappe,et al.  The hyperfine Paschen–Back Faraday effect , 2014, 1401.1659.

[44]  Carter F. Hand,et al.  Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. , 1998, Applied optics.

[45]  J. Beams Electric and Magnetic Double Refraction , 1932 .

[46]  Andrew Horsley,et al.  Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution , 2015, 1510.00223.

[47]  I. Gerhardt,et al.  An atomic spectrum recorded with a single-molecule light source , 2016 .

[48]  Michael Jetter,et al.  Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition , 2016, Nature Communications.

[49]  Michael Faraday,et al.  I. Experimental researches in electricity.—Nineteenth series , 1846, Philosophical Transactions of the Royal Society of London.

[50]  Zach DeVito,et al.  Opt , 2017 .

[51]  R. B. Warrington,et al.  The Voigt effect in a dilute atomic vapour , 1991 .

[52]  Andrew G. Glen,et al.  APPL , 2001 .

[53]  C. Leroy,et al.  Complete hyperfine Paschen-Back regime at relatively small magnetic fields realized in potassium nano-cell , 2015, 1502.07564.

[54]  J. Keaveney,et al.  Optimization of atomic Faraday filters in the presence of homogeneous line broadening , 2015 .

[55]  A. Luiten,et al.  Quantitative atomic spectroscopy for primary thermometry , 2010, 1008.5229.

[56]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[57]  Thomas G. Walker,et al.  Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array , 2011, Physics in medicine and biology.

[58]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[59]  J. Keaveney,et al.  Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime. , 2016, 1602.08944.

[60]  Juha Javanainen,et al.  The Software Atom , 2016, Comput. Phys. Commun..

[61]  J. Keaveney,et al.  Single-Photon Interference due to Motion in an Atomic Collective Excitation. , 2016, Physical review letters.

[62]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[63]  Xiao,et al.  Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[64]  Howard Rosenbaum,et al.  Effects of reading proficiency on embedded stem priming in primary school children , 2021 .

[65]  J. Keaveney,et al.  Atomic Faraday filter with equivalent noise bandwidth less than 1 GHz. , 2015, Optics letters.

[66]  I. Hughes,et al.  The role of hyperfine pumping in multilevel systems exhibiting saturated absorption , 2004 .

[67]  M. Rotondaro,et al.  Generalized treatment of magneto-optical transmission filters , 2015 .

[68]  Hong Guo,et al.  Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm. , 2016, Optics express.

[69]  J. Kitching,et al.  A microfabricated atomic clock , 2004 .

[70]  C. Adams,et al.  Absolute absorption on rubidium D lines: comparison between theory and experiment , 2008, 0805.1139.

[71]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[72]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[73]  C. Adams,et al.  Four-wave mixing in a non-degenerate four-level diamond configuration in the hyperfine Paschen–Back regime , 2017, 1705.01855.

[74]  Peter S. Pershan,et al.  Magneto‐Optical Effects , 1967 .

[75]  L. Trahms,et al.  Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers , 2015, Physics in medicine and biology.

[76]  Jingbiao Chen,et al.  Hollow cathode lamp based Faraday anomalous dispersion optical filter , 2016, Scientific Reports.