Active Release of Nitric Oxide-Releasing Dendrimers from Electrospun Polyurethane Fibers.

The fabrication of electrospun composite polyurethane fibers capable of dual-action antibacterial dendrimer release is reported. Generation 4 (G4) poly(amidoamine) dendrimers were functionalized with octyl alkyl chain or quaternary ammonium (QA) moieties followed by modification of the resulting secondary amines with N-diazeniumdiolate nitric oxide (NO) donors to produce dual-action antibacterial dendrimers. Control and NO-releasing dendrimers were doped into polyurethane solutions prior to electrospinning of the polymer to yield well-defined dendrimer-doped composite polyurethane fibers. The fiber mats were semi-porous (≥30% porosity) and exhibited high water uptake (>100% relative to fiber mass). Dendrimer- and NO-release characteristics (rates and totals) were dependent on the dendrimer modification and polyurethane composition, with total dendrimer- and NO-release amounts ranging from 10 - 80 μg/mg and 0.027 - 0.072 μmol NO/mg, respectively. The antibacterial action of the fibers was evaluated against Gram-negative and Gram-positive bacterial strains. Nitric oxide-releasing fibers demonstrated broad-spectrum bactericidal action at short (2 h) and long (24 h) timescales.