An analytical comparison of different formulations of the travelling salesman problem

A transformation technique is proposed that permits one to derive the linear description of the imageX of a polyhedronZ under an affine linear transformation from the (given) linear description ofZ. This result is used to analytically compare various formulations of the asymmetric travelling salesman problem to the standard formulation due to Dantzig, Fulkerson and Johnson which are all shown to be “weaker formulations” in a precise setting. We also apply this transformation technique to “symmetrize” formulations and show, in particular, that the symmetrization of the standard asymmetric formulation results into the standard one for the symmetric version of the travelling salesman problem.

[1]  Araque Gonzalez,et al.  CONTRIBUTIONS TO THE POLYHEDRAL APPROACH TO VEHICLE ROUTING , 1989 .

[2]  Maurice Queyranne,et al.  The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling , 1978, Oper. Res..

[3]  Alan J. Hoffman,et al.  A generalization of max flow—min cut , 1974, Math. Program..

[4]  H. Weyl Elementare Theorie der konvexen Polyeder , 1934 .

[5]  Egon Balas,et al.  The perfectly matchable subgraph polytope of a bipartite graph , 1983, Networks.

[6]  Alfred Lehman,et al.  On the width—length inequality , 1979, Math. Program..

[7]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[8]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[9]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[10]  M. Padberg,et al.  Lp-based combinatorial problem solving , 1985 .

[11]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[12]  E. Burger Über homogene lineare Ungleichungssysteme , 1956 .

[13]  Egon Balas,et al.  The perfectly Matchable Subgraph Polytope of an arbitrary graph , 1989, Comb..

[14]  Ting-Yi Sung Contributions to the travelling salesman problem and its variants , 1989 .

[15]  M. Padberg Equivalent knapsack‐type formulations of bounded integer linear programs: An alternative approach , 1972 .

[16]  M. Grötschel,et al.  New aspects of polyhedral theory , 1982 .

[17]  Laurence Wolsey,et al.  Strong formulations for mixed integer programming: A survey , 1989, Math. Program..

[18]  Stephen C. Graves,et al.  Technical Note - An n-Constraint Formulation of the (Time-Dependent) Traveling Salesman Problem , 1980, Oper. Res..

[19]  A. Claus A new formulation for the travelling salesman problem , 1984 .