Selection, Integration, and Conflict Monitoring Assessing the Nature and Generality of Prefrontal Cognitive Control Mechanisms

Prefrontal cortex (PFC) supports flexible behavior by mediating cognitive control, though the elemental forms of control supported by PFC remain a central debate. Dorsolateral PFC (DLPFC) is thought to guide response selection under conditions of response conflict or, alternatively, may refresh recently active representations within working memory. Lateral frontopolar cortex (FPC) may also adjudicate response conflict, though others propose that FPC supports higher order control processes such as subgoaling and integration. Anterior cingulate cortex (ACC) is hypothesized to upregulate response selection by detecting response conflict; it remains unclear whether ACC functions generalize beyond monitoring response conflict. The present fMRI experiment directly tested these competing theories regarding the functional roles of DLPFC, FPC, and ACC. Results reveal dissociable control processes in PFC, with mid-DLPFC selectively mediating resolution of response conflict and FPC further mediating subgoaling/integration. ACC demonstrated a broad sensitivity to control demands, suggesting a generalized role in modulating cognitive control.

[1]  James B. Rowe,et al.  Dorsal Prefrontal Cortex: Maintenance in Memory or Attentional Selection? , 2002 .

[2]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[3]  Arthur P. Shimamura,et al.  Memory and frontal lobe function. , 1995 .

[4]  A. Benton,et al.  Frontal Lobe Function and Dysfunction , 1991 .

[5]  Ivan Toni,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[6]  Douglas C. Noll,et al.  Overt Verbal Responding during fMRI Scanning: Empirical Investigations of Problems and Potential Solutions , 1999, NeuroImage.

[7]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[8]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. , 2001, Cerebral cortex.

[9]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[10]  M. Petrides Dissociable Roles of Mid-Dorsolateral Prefrontal and Anterior Inferotemporal Cortex in Visual Working Memory , 2000, The Journal of Neuroscience.

[11]  P. Goldman-Rakic,et al.  Prefrontal Activation Evoked by Infrequent Target and Novel Stimuli in a Visual Target Detection Task: An Event-Related Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[12]  T. Braver,et al.  Anterior Cingulate and the Monitoring of Response Conflict: Evidence from an fMRI Study of Overt Verb Generation , 2000, Journal of Cognitive Neuroscience.

[13]  Keith J. Holyoak,et al.  Structure and Functions of the Human Prefrontal Cortex , 1996 .

[14]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[15]  Donald T. Stuss,et al.  The Frontal Lobes and Control of Cognition and Memory , 2019, The Frontal Lobes Revisited.

[16]  Jonathan D. Cohen,et al.  Interference and Facilitation Effects during Selective Attention: An H2 15O PET Study of Stroop Task Performance , 1995, NeuroImage.

[17]  Denis Dooley,et al.  Atlas of the Human Brain. , 1971 .

[18]  Eliot Hazeltine,et al.  Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection , 2002, NeuroImage.

[19]  J. Ridley Studies of Interference in Serial Verbal Reactions , 2001 .

[20]  J. Duncan An adaptive coding model of neural function in prefrontal cortex , 2001 .

[21]  Arthur F. Kramer,et al.  fMRI Studies of Stroop Tasks Reveal Unique Roles of Anterior and Posterior Brain Systems in Attentional Selection , 2000, Journal of Cognitive Neuroscience.

[22]  G. McCarthy,et al.  Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex , 2002, Nature Neuroscience.

[23]  Alan C. Evans,et al.  Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. , 1993, Journal of neurophysiology.

[24]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of response modality and processing domain. , 2001, Cerebral Cortex.

[25]  D. Stuss,et al.  Principles of frontal lobe function , 2002 .

[26]  Karl J. Friston,et al.  Lateralized Cognitive Processes and Lateralized Task Control in the Human Brain , 2003, Science.

[27]  Marcia K. Johnson,et al.  Second Thoughts versus Second Looks: An Age-Related Deficit in Reflectively Refreshing Just-Activated Information , 2002, Psychological science.

[28]  F M Miezin,et al.  Activation of the hippocampus in normal humans: a functional anatomical study of memory. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Fuster Prefrontal Cortex , 2018 .

[30]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[31]  D. Schacter,et al.  Prefrontal Contributions to Executive Control: fMRI Evidence for Functional Distinctions within Lateral Prefrontal Cortex , 2001, NeuroImage.

[32]  Anthony D Wagner,et al.  Executive Control during Episodic Retrieval Multiple Prefrontal Processes Subserve Source Memory , 2002, Neuron.

[33]  T. Braver,et al.  The Role of Frontopolar Cortex in Subgoal Processing during Working Memory , 2002, NeuroImage.

[34]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[35]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[36]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[37]  James K. Kroger,et al.  Rostrolateral Prefrontal Cortex Involvement in Relational Integration during Reasoning , 2001, NeuroImage.

[38]  K. Kiehl,et al.  Reproducibility of the hemodynamic response to auditory oddball stimuli: A six‐week test–retest study , 2003, Human brain mapping.

[39]  C. Carter,et al.  The anterior cingulate as a conflict monitor: fMRI and ERP studies , 2002, Physiology & Behavior.

[40]  M. Raichle,et al.  The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[42]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[43]  Jonathan D. Cohen,et al.  Anterior Cingulate Cortex, Conflict Monitoring, and Levels of Processing , 2001, NeuroImage.

[44]  Jeffrey M. Zacks,et al.  Neural correlates of incongruous visual information An event-related fMRI study , 2003, NeuroImage.

[45]  A. Wagner,et al.  Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval , 2004, Brain and Cognition.

[46]  G. Berns,et al.  Brain regions responsive to novelty in the absence of awareness. , 1997, Science.

[47]  Tim Shallice,et al.  HIGHER-ORDER COGNITIVE IMPAIRMENTS AND FRONTAL-LOBE LESIONS IN MAN , 1991 .

[48]  Ellen Perecman,et al.  The frontal lobes revisited. , 1987 .

[49]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[50]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[51]  Marcia K. Johnson,et al.  Neuroimaging a Single Thought: Dorsolateral PFC Activity Associated with Refreshing Just-Activated Information , 2002, NeuroImage.

[52]  R. Knight,et al.  Lateral prefrontal damage affects processing selection but not attention switching. , 2002, Brain research. Cognitive brain research.

[53]  B. Ardekani,et al.  Functional magnetic resonance imaging of brain activity in the visual oddball task. , 2002, Brain research. Cognitive brain research.

[54]  J. Cohen,et al.  Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. , 1992, Psychological review.

[55]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[56]  A. Wagner,et al.  Working Memory Contributions to Human Learning and Remembering , 1999, Neuron.

[57]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[58]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[59]  M. Rugg,et al.  Retrieval processing and episodic memory , 2000, Trends in Cognitive Sciences.

[60]  Karl J. Friston,et al.  Investigations of the functional anatomy of attention using the stroop test , 1993, Neuropsychologia.

[61]  James L. McClelland,et al.  On the control of automatic processes: a parallel distributed processing account of the Stroop effect. , 1990, Psychological review.

[62]  Jonathan D. Cohen,et al.  Conflict monitoring versus selection-for-action in anterior cingulate cortex , 1999, Nature.

[63]  N. Cohen,et al.  The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. , 2001, Brain research. Cognitive brain research.

[64]  J. Gabrieli,et al.  The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex , 2000, Psychobiology.

[65]  N. Cohen,et al.  Attentional Control in the Aging Brain: Insights from an fMRI Study of the Stroop Task , 2002, Brain and Cognition.

[66]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[67]  P. Goldman-Rakic,et al.  Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. , 1997, Journal of neurophysiology.

[68]  R. Dolan,et al.  Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval. , 1996, Brain : a journal of neurology.

[69]  T. Dierks,et al.  Cerebral networks linked to the event-related potential P300 , 2003, European Archives of Psychiatry and Clinical Neuroscience.

[70]  F. Miezin,et al.  Functional anatomical studies of explicit and implicit memory retrieval tasks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  S. Kornblum,et al.  Isolation of Specific Interference Processing in the Stroop Task: PET Activation Studies , 1997, NeuroImage.

[72]  J. Desmond,et al.  Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. , 1998, Brain : a journal of neurology.

[73]  S Kornblum,et al.  The way irrelevant dimensions are processed depends on what they overlap with: The case of Stroop- and Simon-like stimuli , 1994, Psychological research.

[74]  F. Craik,et al.  Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. , 1994, Proceedings of the National Academy of Sciences of the United States of America.