Rock types of South Pole‐Aitken basin and extent of basaltic volcanism

The enormous pre-Nectarian South Pole-Aitken (SPA) basin represents a geophysically and compositionally unique region on the Moon. We present and analyze the mineralogical diversity across this basin and discuss the implications for basin evolution. Rock types are derived from Clementine multispectral data based on diagnostic characteristics of ferrous absorptions in fresh materials. Individual areas are characterized as noritic (dominated by low-Ca pyroxene), gabbroic/basaltic (dominated by high-Ca pyroxene), feldspathic (<3–6% FeO), and olivine-gabbro (dominated by high-Ca pyroxene and olivine). The anorthositic crust has effectively been removed from the interior of the basin. The style of volcanism within the basin extends over several 100 Myr and includes mare basalt and pyroclastic deposits. Several areas of ancient (pre-Orientale) volcanism, or cryptomaria, have also been identified. The nonmare mafic lithology that occurs across the basin is shown to be noritic in composition and is pervasive laterally and vertically. We interpret this to represent impact melt/breccia deposits derived from the lower crust. A few localized areas are identified within the basin that contain more diverse lithologies (gabbro, olivine-gabbro), some of which may represent material from the deepest part of the lower crust and perhaps uppermost mantle involved in the SPA event.

[1]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[2]  Bonnie J. Buratti,et al.  Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis camera , 1999 .

[3]  J. Head,et al.  Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts , 1992 .

[4]  Paul G. Lucey,et al.  Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques , 1997 .

[5]  T. McCord,et al.  Optical properties of mineral separates, glass, and anorthositic fragments from Apollo mare samples , 1971 .

[6]  G. J. Taylor,et al.  Abundance and Distribution of Iron on the Moon , 1995, Science.

[7]  David E. Smith,et al.  Topographic-Compositional Units on the Moon and the Early Evolution of the Lunar Crust , 1994, Science.

[8]  Carle M. Pieters,et al.  Mineralogy of the lunar crust: Results from Clementine , 1999 .

[9]  D. H. Scott,et al.  Geologic Map of the West Side of the Moon , 1977 .

[10]  Lisa R. Gaddis,et al.  Digital Processing for a Global Multispectral Map of the Moon from the Clementine UVVIS Imaging Instrument , 1999 .

[11]  A. McEwen,et al.  Compositional variations on the Moon: Recalibration of Galileo solid-state imaging data for the Orientale region and farside , 1995 .

[12]  David E. Smith,et al.  The Clementine Mission to the Moon: Scientific Overview , 1994, Science.

[13]  Patrick Pinet,et al.  Discrimination between maturity and composition of lunar soils from integrated Clementine UV‐visible/near‐infrared data: Application to the Aristarchus Plateau , 2000 .

[14]  A. Ferrari Lunar gravity: A harmonic analysis , 1977 .

[15]  Paul G. Lucey,et al.  FeO and TiO2 concentrations in the South Pole‐Aitken basin: Implications for mantle composition and basin formation , 1998 .

[16]  R. Phillips,et al.  Lunar Multiring Basins and the Cratering Process , 1999 .

[17]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[18]  M E Davies,et al.  Lunar Impact Basins and Crustal Heterogeneity: New Western Limb and Far Side Data from Galileo , 1992, Science.

[19]  S. Maurice,et al.  Global elemental maps of the moon: the Lunar Prospector gamma-Ray spectrometer. , 1998, Science.

[20]  T. McCord,et al.  Alteration of Lunar Optical Properties: Age and Composition Effects , 1971, Science.

[21]  C. Weitz,et al.  Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies , 1998 .

[22]  R. Reedy,et al.  Element concentrations from lunar orbital gamma-ray measurements , 1974 .

[23]  W. Sjogren,et al.  Lunar Shape via the Apollo Laser Altimeter , 1973, Science.

[24]  E. Fischer,et al.  A Sharper View of Impact Craters from Clementine Data , 1994, Science.

[25]  Paul G. Lucey,et al.  Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery , 1998 .

[26]  David A. Morrison,et al.  Did a Thick South Pole-Aitken Basin Melt Sheet Differentiate to Form Cumulates? , 1998 .

[27]  J. Head,et al.  Geology of mare deposits in South Pole‐Aitken basin as seen by Clementine UV/VIS data , 1999 .

[28]  W. M. Kaula,et al.  Apollo 17 laser altimeter , 1973 .

[29]  J. Head,et al.  Volumes of lunar lava ponds in South Pole‐Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions , 1997 .

[30]  Paul D. Spudis,et al.  Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry , 1994, Science.

[31]  John F. Mustard,et al.  Buried stratigraphic relationships along the southwestern shores of Oceanus Procellarum: Implications for early lunar volcanism , 1996 .

[32]  David E. Smith,et al.  The lunar crust: Global structure and signature of major basins , 1996 .

[33]  Alfred S. McEwen,et al.  Lunar impact basins: New data for the western limb and far side (Orientale and South Pole‐Aitken Basins) from the first Galileo flyby , 1993 .

[34]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[35]  Thomas H. Prettyman,et al.  Thorium abundances on the lunar surface , 2000 .

[36]  David E. Smith,et al.  The Shape and Internal Structure of the Moon from the Clementine Mission , 1994, Science.

[37]  C. Weitz,et al.  Ascent and eruption of a lunar high‐titanium magma as inferred from the petrology of the 74001/2 drill core , 1999 .

[38]  L. Gaddis,et al.  Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data , 2000 .

[39]  L. Gaddis,et al.  The Character and Possible Origin of ``Olivine Hill'' in South Pole-Aitken Basin , 2001 .

[40]  J. M. Rhodes,et al.  Mare basalts: Crystal chemistry, mineralogy, and petrology , 1976 .

[41]  D. H. Scott,et al.  Lunar basin formation and highland stratigraphy , 1974 .

[42]  A. N. Sanovich,et al.  Origin of the Southern Basin on the far side of the moon , 1985 .

[43]  Carle M. Pieters,et al.  Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle , 1997 .

[44]  Paul G. Lucey,et al.  Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images , 2000 .

[45]  Karl J. Becker,et al.  ISIS - A Software Architecture for Processing Planetary Images , 1997 .

[46]  Mark J. Cintala,et al.  Scaling impact melting and crater dimensions: Implications for the lunar cratering record , 1998 .

[47]  R. Phillips,et al.  The structure and compensation of the lunar highland crust , 1996 .

[48]  D. E. Stuart-Alexander,et al.  Geologic map of the central far side of the Moon , 1978 .

[49]  W. R. Wollenhaupt,et al.  Comments on the figure of the moon based on preliminary results from laser altimetry , 1972 .

[50]  Richard E. Lingenfelter,et al.  Lunar topography from Apollo 15 and 16 laser altimetry , 1973 .

[51]  Paul G. Lucey,et al.  Imaging of lunar surface maturity , 2000 .

[52]  David E. Smith,et al.  Topography of the Moon from the Clementine lidar , 1997 .

[53]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[54]  C. Pieters,et al.  Integrated Spectral Analysis of Mare Soils and Craters: Applications to Eastern Nearside Basalts , 2000 .

[55]  W. Hartmann,et al.  Concentric Structures Surrounding Lunar Basins , 1962 .

[56]  Sean C. Solomon,et al.  The evolution of impact basins - Viscous relaxation of topographic relief. [for lunar surface modeling] , 1982 .