AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies

We present the version 2 of AlterBBN, an open public code for the calculation of the abundance of the elements from Big-Bang nucleosynthesis. It does not rely on any closed external library or program, aims at being user-friendly and allowing easy modifications, and provides a fast and reliable calculation of the Big-Bang nucleosynthesis constraints in the standard and alternative cosmologies.

[1]  Alexandre Arbey,et al.  SuperIso Relic v3.0: A program for calculating relic density and flavour physics observables: Extension to NMSSM , 2011, Comput. Phys. Commun..

[2]  Gennaro Miele,et al.  PArthENoPE: Public algorithm evaluating the nucleosynthesis of primordial elements , 2007, Comput. Phys. Commun..

[3]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[4]  Farvah Mahmoudi,et al.  SuperIso Relic v4: A program for calculating dark matter and flavour physics observables in supersymmetry , 2018, Comput. Phys. Commun..

[5]  J. Uzan,et al.  Precision big bang nucleosynthesis with improved Helium-4 predictions , 2018, Physics Reports.

[6]  Subir Sarkar,et al.  Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations , 1998 .

[7]  G. Steigman,et al.  BBN and the CMB constrain neutrino coupled light WIMPs , 2014, 1411.6005.

[8]  R. Wagoner Synthesis of the Elements Within Objects Exploding from Very High Temperatures , 1969 .

[9]  A. Arbey,et al.  SUSY constraints, relic density, and very early universe , 2009, 0906.0368.

[10]  A. Arbey,et al.  SUSY constraints from relic density : High sensitivity to pre-BBN expansion rate , 2008, 0803.0741.

[11]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[12]  C. Steidel,et al.  One Percent Determination of the Primordial Deuterium Abundance , 2017, 1710.11129.

[13]  J. Ellis,et al.  Dark matter casts light on the early Universe , 2018, Journal of High Energy Physics.

[14]  K. Jedamzik Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles , 2006, hep-ph/0604251.

[15]  K. Olive,et al.  The effects of He I λ10830 on helium abundance determinations , 2015, 1503.08146.

[16]  Alexandre Arbey,et al.  AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies , 2011, Comput. Phys. Commun..

[17]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[18]  P. Gondolo,et al.  Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model , 2006, hep-ph/0602230.

[19]  Farvah Mahmoudi,et al.  SuperIso Relic: A program for calculating relic density and flavor physics observables in Supersymmetry , 2009, Comput. Phys. Commun..

[20]  F. Mahmoudi,et al.  The correlation matrix of Higgs rates at the LHC , 2016, 1606.00455.

[21]  A. Arbey,et al.  Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter) , 2011, 1103.3244.

[22]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[23]  E. S. Jenssen New AlterBBN: A Code for Big Bang Nucleosynthesis with Light Dark Matter , 2016 .

[24]  Michael S. Turner,et al.  The Early Universe , 1990 .

[25]  William A. Fowler,et al.  On the Synthesis of elements at very high temperatures , 1967 .