Phase Change of Limit Laws in the Quicksort Recurrence under Varying Toll Functions

We characterize all limit laws of the quicksort-type random variables defined recursively by ${\cal L}(X_n)= {\cal L}(X_{I_n}+X^*_{n-1-I_n}+T_n)$ when the "toll function" Tn varies and satisfies general conditions, where (Xn), (Xn*), (In, Tn) are independent, In is uniformly distributed over {0, . . .,n-1}, and ${\cal L}(X_n)={\cal L}(X_n^\ast)$. When the "toll function" Tn (cost needed to partition the original problem into smaller subproblems) is small (roughly $\limsup_{n\rightarrow\infty}\log E(T_n)/\log n\le 1/2$), Xn is asymptotically normally distributed; nonnormal limit laws emerge when Tn becomes larger. We give many new examples ranging from the number of exchanges in quicksort to sorting on a broadcast communication model, from an in-situ permutation algorithm to tree traversal algorithms, etc.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  V. Zolotarev Ideal Metrics in the Problem of Approximating Distributions of Sums of Independent Random Variables , 1978 .

[3]  James Allen Fill,et al.  On the distribution of binary search trees under the random permutation model , 1996, Random Struct. Algorithms.

[4]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[6]  Hsien-Kuei Hwang,et al.  An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms , 2002, J. Algorithms.

[7]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[8]  Helmut Prodinger,et al.  Sorting algorithms for broadcast communications: mathematical analysis , 2002, Theor. Comput. Sci..

[9]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[10]  Ralph Neininger,et al.  On a multivariate contraction method for random recursive structures with applications to Quicksort , 2001, Random Struct. Algorithms.

[11]  Ralph Neininger The Wiener Index Of Random Trees , 2002, Comb. Probab. Comput..

[12]  Hsien-Kuei Hwang,et al.  Asymptotics of poisson approximation to random discrete distributions: an analytic approach , 1999, Advances in Applied Probability.

[13]  Werner Schachinger Limiting distributions for the costs of partial match retrievals in multidimensional tries , 2000, Random Struct. Algorithms.

[14]  Donald E. Knuth,et al.  Mathematical Analysis of Algorithms , 1971, IFIP Congress.

[15]  Norman Y. Foo,et al.  Analysis of Algorithms on Threaded Trees , 1981, Computer/law journal.

[16]  P. Flajolet,et al.  Patterns in random binary search trees , 1997 .

[17]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[18]  Helmut Prodinger,et al.  Binary search tree recursions with harmonic toll functions , 2002 .

[19]  Luc Devroye,et al.  Limit Laws for Sums of Functions of Subtrees of Random Binary Search Trees , 2002, SIAM J. Comput..

[20]  Joseph JáJá A perspective on Quicksort , 2000, Comput. Sci. Eng..

[21]  Arne Andersson A Note on the Expected Behaviour of Binary Tree Traversals , 1990, Comput. J..

[22]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[23]  Hsien-Kuei Hwang,et al.  Quickselect and the Dickman Function , 2002, Combinatorics, Probability and Computing.

[24]  Walter A. Burkhard Nonrecursive Traversals of Trees , 1975, Comput. J..

[25]  Chang-Biau Yang,et al.  A Fast Sorting Algorithm and Its Generalization on Broadcast Communications , 2000, COCOON.

[26]  John Michael Robson An Improved Algorithm for Traversing Binary Trees Without Auxiliary Stack , 1973, Inf. Process. Lett..

[27]  John D. Valois Introspective sorting and selection revisited , 2000 .

[28]  Hsien-Kuei Hwang,et al.  Phase changes in random m‐ary search trees and generalized quicksort , 2001, Random Struct. Algorithms.

[29]  Hosam M. Mahmoud,et al.  Analysis of Quickselect: An Algorithm for Order Statistics , 1995, RAIRO Theor. Informatics Appl..

[30]  Micha Hofri,et al.  Efficient Reorganization of Binary Search Trees , 2001, Algorithmica.

[31]  Michel Loève,et al.  Probability Theory I , 1977 .

[32]  Trevor I. Fenner,et al.  A note on traversal algorithms for triply linked binary trees , 1981, BIT Comput. Sci. Sect..

[33]  S. Rachev,et al.  Probability metrics and recursive algorithms , 1995, Advances in Applied Probability.

[34]  Pascal Hennequin Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche , 1991 .

[35]  Iain D. G. Macleod An Algorithm For In-Situ Permutation , 1970, Aust. Comput. J..

[36]  P. Diaconis Application of the method of moments in probability and statistics , 1987 .

[37]  H. Mahmoud Sorting: A Distribution Theory , 2000 .

[38]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[39]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[40]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[41]  Helmut Prodinger,et al.  How to select a loser , 1993, Discret. Math..

[42]  Wojciech Szpankowski,et al.  On the distribution for the duration of a randomized leader election algorithm , 1996 .

[43]  Uwe Rr Osler The Contraction Method for Recursive Algorithms , 1999 .

[44]  Joseph M. Morris,et al.  Traversing Binary Trees Simply and Cheaply , 1979, Inf. Process. Lett..

[45]  B. Pittel Normal convergence problem? Two moments and a recurrence may be the clues , 1999 .

[46]  Z. Bai,et al.  Normal approximations of the number of records in geometrically distributed random variables , 1998 .

[47]  Svante Janson,et al.  Smoothness and decay properties of the limiting Quicksort density function , 2000, ArXiv.

[48]  H. Prodinger,et al.  A CONTRIBUTION TO THE ANALYSIS OF IN SITU PERMUTATION , 2003 .

[49]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[50]  N. Trinajstic Chemical Graph Theory , 1992 .

[51]  Jon Louis Bentley,et al.  Engineering a sort function , 1993, Softw. Pract. Exp..

[52]  Philippe Flajolet,et al.  Patterns in random binary search trees , 1997, Random Struct. Algorithms.

[53]  J. A. Fill On the distribution of binary search trees under the random permutation model , 1996, Random Struct. Algorithms.

[54]  D. Gordon,et al.  Eliminating the Flag in Threaded Binary Search Trees , 1986, Inf. Process. Lett..

[55]  Barry Dwyer Simple Algorithms for Traversing a Tree Without an Auxiliary Stack , 1973, Inf. Process. Lett..

[56]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[57]  Hosam M. Mahmoud Limiting Distributions for Path Lengths in Recursive Trees , 1991 .

[58]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[59]  Ludger Rüschendorf,et al.  Analysis of recursive algorithms by the contraction method , 1996 .

[60]  U. Rösler A limit theorem for "Quicksort" , 1991, RAIRO Theor. Informatics Appl..

[61]  P. Spreij Probability and Measure , 1996 .

[62]  Mireille Régnier A Limiting Distribution for Quicksort , 1989, RAIRO Theor. Informatics Appl..

[63]  Keith Brinck The Expected Performance of Traversal Algorithms in Binary Trees , 1985, Comput. J..

[64]  Svetlozar T. Rachev,et al.  An Ideal Metric and the Rate of Convergence to a Self-Similar Process , 1987 .

[65]  James Allen Fill,et al.  Total Path Length for Random Recursive Trees , 1999, Combinatorics, Probability and Computing.

[66]  U. Rösler A fixed point theorem for distributions , 1992 .

[67]  Luc Devroye,et al.  Limit Laws for Local Counters in Random Binary Search Tree , 1991, Random Struct. Algorithms.

[68]  P. Hennequin Combinatorial Analysis of Quicksort Algorithm , 1989, RAIRO Theor. Informatics Appl..

[69]  Simon Tavaré,et al.  A Rate for the Erdös-Turán Law , 1994, Comb. Probab. Comput..

[70]  S. Rachev,et al.  A new ideal metric with applications to multivariate stable limit theorems , 1992 .

[71]  Ralph Neininger,et al.  Limit laws for random recursive structures and algorithms , 1999 .

[72]  R. Neininger,et al.  On binary search tree recursions with monomials as toll functions , 2002 .

[73]  M. Meerschaert Regular Variation in R k , 1988 .

[74]  S. Rachev,et al.  Mass transportation problems , 1998 .

[75]  R. Neininger,et al.  A General Contraction Theorem and Asymptotic Normality in Combinatorial Structures , 2001 .

[76]  Werner Schachinger,et al.  Limiting distributions for the costs of partial match retrievals in multidimensional tries , 2000, Random Struct. Algorithms.