Patterns of nucleotide substitution in pseudogenes and functional genes

[1]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[2]  F. Vogel,et al.  Higher frequencies of transitions among point mutations , 1977, Journal of Molecular Evolution.

[3]  H. Hori Evolution of 5sRNA , 1975, Journal of Molecular Evolution.

[4]  M. Nei,et al.  Biases of the estimates of DNA divergence obtained by the restriction enzyme technique , 2005, Journal of Molecular Evolution.

[5]  Allan C. Wilson,et al.  Mitochondrial DNA sequences of primates: Tempo and mode of evolution , 2005, Journal of Molecular Evolution.

[6]  E. Cox,et al.  Mutational specificity of a conditional Escherichia coli mutator, mutD5 , 2004, Molecular and General Genetics MGG.

[7]  M. Nei,et al.  Pseudogenes as a paradigm of neutral evolution , 1981, Nature.

[8]  A. Fersht,et al.  DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine.purine, purine.pyrimidine, and pyrimidine.pyrimidine mismatches during DNA replication. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Modiano,et al.  Nonrandom patterns of codon usage and of nucleotide substitutions in human alpha- and beta-globin genes: an evolutionary strategy reducing the rate of mutations with drastic effects? , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. Weiner,et al.  Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Miyata,et al.  Rapidly evolving mouse alpha-globin-related pseudo gene and its evolutionary history. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. D. Topal,et al.  Molecular basis for substitution mutations. Effect of primer terminal and template residues on nucleotide selection by phage T4 DNA polymerase in vitro. , 1980, The Journal of biological chemistry.

[14]  T. Rabbitts,et al.  Human immunoglobulin variable region genes—DNA sequences of two Vκ genes and a pseudogene , 1980, Nature.

[15]  H. Goodman,et al.  Most of the coding region of rat ACTHβ–LPH precursor gene lacks intervening sequences , 1980, Nature.

[16]  A. Riggs,et al.  DNA methylation and gene function. , 1980, Science.

[17]  A. Michelson,et al.  The 3′ untranslated regions of the duplicated human α-globin genes are unexpectedly divergent , 1980, Cell.

[18]  E. Schon,et al.  Identification by nucleotide sequence analysis of a goat pseudoglobin gene. , 1980, Nucleic acids research.

[19]  A. Jeffreys,et al.  The 5' flanking region of human epsilon-globin gene. , 1980, Nucleic acids research.

[20]  C. Shoulders,et al.  The primary structure of the human ϵ-globin gene , 1980, Cell.

[21]  S. Weissman,et al.  Complete nucleotide sequence of the human δ-globin gene , 1980, Cell.

[22]  T. Maniatis,et al.  The nucleotide sequence of the human β-globin gene , 1980, Cell.

[23]  Tom Maniatis,et al.  The structure of a human α-globin pseudogene and its relationship to α-globin gene duplication , 1980, Cell.

[24]  T. Maniatis,et al.  The nucleotide sequence of a rabbit β-globin pseudogene , 1980, Cell.

[25]  C. Hutchison,et al.  DNA sequence organization of the β-globin complex in the BALB/c mouse , 1980, Cell.

[26]  A. C. Chang,et al.  Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P. Leder,et al.  Unusual alpha-globin-like gene that has cleanly lost both globin intervening sequences. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Leder,et al.  Organization and complete sequence of identical embryonic and plasmacytoma kappa V-region genes. , 1980, The Journal of biological chemistry.

[29]  J. R. Fresco,et al.  BASE MISPAIRING AND NEAREST-NEIGHBOR EFFECTS IN TRANSITION MUTATIONS , 1980 .

[30]  B. Alberts,et al.  Mechanistic studies of DNA replication and genetic recombination : proceedings of the 1980 ICN-UCLA Symposia on Mechanistic Studies of DNA and Genetic Recombination held in Keystone, Colorado, March 16-21, 1980 , 1980 .

[31]  N. Sinha,et al.  PROBING THE MECHANISM OF TRANSITION AND TRANSVERSION MUTAGENESIS USING THE PHAGE T4 DNA REPLICATION APPARATUS IN VITRO , 1980 .

[32]  F. Blattner,et al.  Sequence of the cloned gene for the constant region of murine gamma 2b immunoglobulin heavy chain. , 1979, Science.

[33]  N. Rosenthal,et al.  The structure and transcription of four linked rabbit β-like globin genes , 1979, Cell.

[34]  P. Leder,et al.  The complete sequence of a chromosomal mouse α-globin gene reveals elements conserved throughout vertebrate evolution , 1979, Cell.

[35]  J. Maizel,et al.  The evolution and sequence comparison of two recently diverged mouse chromosomal β-globin genes , 1979, Cell.

[36]  N. Rosenthal,et al.  The structure and evolution of the two nonallelic rat preproinsulin genes , 1979, Cell.

[37]  Hitoshi Sakano,et al.  Sequences at the somatic recombination sites of immunoglobulin light-chain genes , 1979, Nature.

[38]  Stanley N Cohen,et al.  Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor , 1979, Nature.

[39]  R. Staden,et al.  Sequence of three introns in the chick ovalbumin gene , 1979, Nature.

[40]  S. Tonegawa,et al.  Sequences of mouse immunoglobulin light chain genes before and after somatic changes , 1978, Cell.

[41]  R. Flavell,et al.  Comparison of cloned rabbit and mouse β-globin genes showing strong evolutionary divergence of two homologous pairs of introns , 1978, Nature.

[42]  W. Salser,et al.  The primary sequence of rabbit α-globin mRNA , 1978, Cell.

[43]  Philip J. Farabaugh,et al.  Molecular basis of base substitution hotspots in Escherichia coli , 1978, Nature.

[44]  S. Fields,et al.  Sequence of chicken ovalbumin mRNA , 1978, Nature.

[45]  G. Brownlee,et al.  A pseudogene structure in 5S DNA of Xenopus laevis , 1977, Cell.

[46]  M. D. Topal,et al.  Complementary base pairing and the origin of substitution mutations , 1976, Nature.

[47]  R. Grantham Amino Acid Difference Formula to Help Explain Protein Evolution , 1974, Science.

[48]  W. Fitch,et al.  Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations. , 1967, Journal of molecular biology.

[49]  F. Crick,et al.  Genetical Implications of the Structure of Deoxyribonucleic Acid , 1953, Nature.

[50]  P. Leder,et al.  Unusual a-globin-like gene that has cleanly lost both globin intervening sequences ( gene conversion / recombinant DNA ) , 2022 .

[51]  G. A.,et al.  Nonrandom patterns of codon usage and of nucleotide substitutions in human a- and 18-globin genes: An evolutionary strategy reducing the rate of mutations with drastic effects? , 2022 .