Towards Confirmable Automated Plant Cover Determination

[1]  Xilin Chen,et al.  Self-Supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Bo Dai,et al.  Self-Supervised Scene De-Occlusion , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Sebastian Schmidtlein,et al.  Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery , 2020, Remote Sensing in Ecology and Conservation.

[4]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[5]  Guanbin Li,et al.  Crowd Counting With Deep Structured Scale Integration Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Hao Lu,et al.  From Open Set to Closed Set: Counting Objects by Spatial Divide-and-Conquer , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Christopher Zach,et al.  Seeing Behind Things: Extending Semantic Segmentation to Occluded Regions , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Suha Kwak,et al.  Weakly Supervised Learning of Instance Segmentation With Inter-Pixel Relations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Patrick Mäder,et al.  Flora Incognita – wie künstliche Intelligenz die Pflanzenbestimmung revolutioniert , 2019, Biologie in unserer Zeit.

[10]  Anne D. Bjorkman,et al.  Global trait–environment relationships of plant communities , 2018, Nature Ecology & Evolution.

[11]  Haroon Idrees,et al.  Composition Loss for Counting, Density Map Estimation and Localization in Dense Crowds , 2018, ECCV.

[12]  Wenyu Liu,et al.  Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  P. Reich,et al.  Shifting plant species composition in response to climate change stabilizes grassland primary production , 2018, Proceedings of the National Academy of Sciences.

[14]  N. Eisenhauer,et al.  From climate chambers to biodiversity chambers , 2018 .

[15]  M. Migliavacca,et al.  Traits and climate are associated with first flowering day in herbaceous species along elevational gradients , 2017, Ecology and evolution.

[16]  Yang Song,et al.  The iNaturalist Species Classification and Detection Dataset , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  Ben C. Stöver,et al.  LeafNet: A computer vision system for automatic plant species identification , 2017, Ecol. Informatics.

[18]  Thomas A. Funkhouser,et al.  Dilated Residual Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Mostafa Mehdipour-Ghazi,et al.  Plant identification using deep neural networks via optimization of transfer learning parameters , 2017, Neurocomputing.

[20]  Bernt Schiele,et al.  Simple Does It: Weakly Supervised Instance and Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[22]  S. Klotz,et al.  Multitrophische Biodiversitätsmanipulation unter kontrollierten Umweltbedingungen im iDiv Ecotron , 2017 .

[23]  Hulya Yalcin,et al.  Plant classification using convolutional neural networks , 2016, 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics).

[24]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[25]  Jitendra Malik,et al.  Amodal Instance Segmentation , 2016, ECCV.

[26]  N. Sanders,et al.  Bottom–up and top–down effects on plant communities: nutrients limit productivity, but insects determine diversity and composition , 2016 .

[27]  Christoph H. Lampert,et al.  Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation , 2016, ECCV.

[28]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Martin Hermy,et al.  Combining Biodiversity Resurveys across Regions to Advance Global Change Research , 2017 .

[31]  J. Lenoir,et al.  Drivers of temporal changes in temperate forest plant diversity vary across spatial scales , 2015, Global change biology.

[32]  Paolo Remagnino,et al.  Deep-plant: Plant identification with convolutional neural networks , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[33]  Trevor Darrell,et al.  Constrained Convolutional Neural Networks for Weakly Supervised Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[34]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[35]  Jian Sun,et al.  BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[38]  Carsten F. Dormann,et al.  EDITOR'S CHOICE: REVIEW: Effects of land use on plant diversity – A global meta‐analysis , 2014 .

[39]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[40]  S. Cousins,et al.  Landscape structure and land use history influence changes in island plant composition after 100 years , 2012 .

[41]  Jenica M. Allen,et al.  Phenological tracking enables positive species responses to climate change. , 2012, Ecology.

[42]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[43]  M. Estiarte,et al.  Plant community changes induced by experimental climate change: Seedling and adult species composition , 2009 .

[44]  Richard B Primack,et al.  Global warming and flowering times in Thoreau's Concord: a community perspective. , 2008, Ecology.

[45]  Cynthia Rosenzweig,et al.  Assessment of observed changes and responses in natural and managed systems , 2007 .

[46]  J. Peñuelas,et al.  European phenological response to climate change matches the warming pattern , 2006 .

[47]  A. Fitter,et al.  Rapid Changes in Flowering Time in British Plants , 2002, Science.