Catalytic oxidation of low concentrations of vinyl chloride over spinel-type Co3O4 catalysts

[1]  Yiling Wan,et al.  Catalytic Combustion of Vinyl Chloride Emission over a TiO2–MnO x Catalyst , 2017 .

[2]  A. Giroir‐Fendler,et al.  Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts , 2017 .

[3]  J. Gutiérrez-Ortiz,et al.  Oxidation of 1,2-dichloroethane over nanocube-shaped Co3O4 catalysts , 2016 .

[4]  A. Giroir‐Fendler,et al.  Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co3O4 catalysts , 2016 .

[5]  M. S. Kamal,et al.  Catalytic oxidation of volatile organic compounds (VOCs) – A review , 2016 .

[6]  Dong Wu,et al.  Synthesis and catalytic property of facet-controlled Co3O4 structures enclosed by (111) and (113) facets , 2016 .

[7]  I. Lick,et al.  Total oxidation of propane and naphthalene from emission sources with supported cobalt catalysts , 2016, Reaction Kinetics, Mechanisms and Catalysis.

[8]  A. Giroir‐Fendler,et al.  Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride , 2016 .

[9]  Zhong Lin Wang,et al.  Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature , 2016 .

[10]  Xing Zhu,et al.  Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity , 2016 .

[11]  X. Yao,et al.  Low-temperature catalytic oxidation of formaldehyde over Co3O4 catalysts prepared using various precipitants , 2016 .

[12]  Wei Deng,et al.  Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2–TiO2 mixed oxide catalysts , 2016 .

[13]  J. Shie,et al.  Catalytic destruction of vinyl chloride over an alumina–supported platinum catalyst , 2015, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[14]  Wei Liu,et al.  Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts , 2015 .

[15]  Y. Hayakawa,et al.  Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures , 2015 .

[16]  Guangming Zeng,et al.  Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. , 2014, Environment international.

[17]  Yu Dai,et al.  Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion. , 2014, Journal of colloid and interface science.

[18]  Wenjie Shen,et al.  Synthesis of Co3O4 nanotubes and their catalytic applications in CO oxidation , 2013 .

[19]  G. Lu,et al.  Highly Active and Stable Co3O4/ZSM-5 Catalyst for Propane Oxidation: Effect of the Preparation Method , 2013 .

[20]  J. Gutiérrez-Ortiz,et al.  Promoted activity of sulphated Ce/Zr mixed oxides for chlorinated VOC oxidative abatement , 2013 .

[21]  A. Giroir‐Fendler,et al.  Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts , 2013 .

[22]  C. Au,et al.  Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene , 2013 .

[23]  G. D. Castro Dose-dependent transitions in mechanisms of toxicity and risk assessment in toxicology Dependência da dosagem nos mecanismos de toxicidade e avaliação de risco em toxicologia , 2013 .

[24]  Zhiquan Jiang,et al.  Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2 , 2012 .

[25]  Wei Li,et al.  The degradation of 1,2,4-trichlorobenzene using synthesized Co3O4 and the hypothesized mechanism. , 2011, Journal of hazardous materials.

[26]  J. Gutiérrez-Ortiz,et al.  Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement , 2011 .

[27]  J. Shie,et al.  Atmospheric-Pressure Radio-Frequency Discharge for Degradation of Vinyl Chloride With $\hbox{Pt}/\hbox{Al}_{2}\hbox{O}_{3}$ Catalyst , 2011, IEEE Transactions on Plasma Science.

[28]  T. García,et al.  Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route , 2010 .

[29]  Changwen Hu,et al.  Synthesis of Co3O4 nanostructures using a solvothermal approach , 2009 .

[30]  Qing Peng,et al.  Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. , 2008, Journal of the American Chemical Society.

[31]  S. Albonetti,et al.  The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts , 2008 .

[32]  Chen-Bin Wang,et al.  Effect of the surface area of cobaltic oxide on carbon monoxide oxidation , 2005 .

[33]  A. Ackermann VC und CIS im Grund- und Oberflächenwasser: Kontamination von Bodenluft und Grabensedimenten. Risikoabschätzungen für die Nahrungskette, Untersuchungen von Lebensmittelproben , 2004 .

[34]  A. Ackermann [VC and DCE in groundwater and drainage channel water]. , 2004, Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)).

[35]  M. Mohseni,et al.  Gas phase vinyl chloride (VC) oxidation using TiO2-based photocatalysis , 2003 .

[36]  M. D. Amiridis,et al.  Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts , 1998 .

[37]  Prashant S. Chintawar,et al.  Decomposition characteristics of chlorinated ethylenes on metal loaded zeolite Y and γ-Al2O3 , 1997 .

[38]  K. Deller,et al.  Catalytic purification of waste gases containing chlorinated hydrocarbons with precious metal catalysts , 1993 .

[39]  A. H. Wehe,et al.  Thermal and catalytic incinerators for the control of VOCs. , 1991, Journal of the Air & Waste Management Association.