PDE-Driven Adaptive Morphology for Matrix Fields

Matrix fields are important in many applications since they are the adequate means to describe anisotropic behaviour in image processing models and physical measurements. A prominent example is diffusion tensor magnetic resonance imaging (DT-MRI) which is a medical imaging technique useful for analysing the fibre structure in the brain. Recently, morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images have been extended to three dimensional fields of symmetric positive definite matrices. In this article we propose a novel method to incorporate adaptivity into the matrix-valued, PDE-driven dilation process. The approach uses a structure tensor concept for matrix data to steer anisotropic morphological evolution in a way that enhances and completes line-like structures in matrix fields. Numerical experiments performed on synthetic and real-world data confirm the gap-closing and line-completing qualities of the proposed method.

[1]  Krishnamoorthy Sivakumar,et al.  Morphological Operators for Image Sequences , 1995, Comput. Vis. Image Underst..

[2]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[3]  Joachim Weickert,et al.  A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields , 2009 .

[4]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[5]  Universitdes Saarlandes,et al.  Curvature-Driven PDE Methods for Matrix-Valued Images , 2004 .

[6]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[7]  Soille Pierre,et al.  Mathematical Morphology and Its Applications to Image and Signal Processing , 2011, Lecture Notes in Computer Science.

[8]  Maher Moakher,et al.  Visualization and Processing of Tensor Fields , 2006, Mathematics and Visualization.

[9]  T. Brox,et al.  Diffusion and regularization of vector- and matrix-valued images , 2002 .

[10]  Luc Vincent,et al.  Mathematical morphology: The Hamilton-Jacobi connection , 1993, 1993 (4th) International Conference on Computer Vision.

[11]  Etienne Decencière,et al.  Image filtering using morphological amoebas , 2007, Image Vis. Comput..

[12]  J. Weickert,et al.  Visualization and Processing of Tensor Fields (Mathematics and Visualization) , 2005 .

[13]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[14]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[15]  A. R. Rao,et al.  Computing oriented texture fields , 1989, CVPR 1989.

[16]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[17]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[18]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Thomas Brox,et al.  Nonlinear structure tensors , 2006, Image Vis. Comput..

[20]  Josef Bigün Vision with direction - a systematic introduction to image processing and computer vision , 2006 .

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Joachim Weickert,et al.  Morphology for matrix data: Ordering versus PDE-based approach , 2007, Image Vis. Comput..

[23]  Michael Breuß,et al.  Anisotropic Continuous-Scale Morphology , 2007, IbPRIA.

[24]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[25]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[26]  Rachid Deriche,et al.  Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization , 2002, ECCV.

[27]  Joachim Weickert,et al.  Flexible Segmentation and Smoothing of DT-MRI Fields Through a Customizable Structure Tensor , 2006, ISVC.

[28]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[29]  John I. Goutsias,et al.  Mathematical Morphology and its Applications to Image and Signal Processing , 2000, Computational Imaging and Vision.

[30]  Petros Maragos,et al.  Evolution equations for continuous-scale morphological filtering , 1994, IEEE Trans. Signal Process..

[31]  Henry P. Kramer,et al.  Iterations of a non-linear transformation for enhancement of digital images , 1975, Pattern Recognit..

[32]  G. Matheron Random Sets and Integral Geometry , 1976 .

[33]  Otmar Scherzer,et al.  Inverse Problems, Image Analysis, and Medical Imaging , 2002 .

[34]  H. Heijmans Morphological image operators , 1994 .

[35]  Luc Florack,et al.  A generic approach to diffusion filtering of matrix-fields , 2007, Computing.

[36]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[37]  J. Craggs Applied Mathematical Sciences , 1973 .

[38]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[39]  Ioannis Andreadis,et al.  A new approach to morphological color image processing , 2002, Pattern Recognit..

[40]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .