$$\varGamma $$Γ-Convergence of the Heitmann–Radin Sticky Disc Energy to the Crystalline Perimeter

We consider low-energy configurations for the Heitmann–Radin sticky discs functional, in the limit of diverging number of discs. More precisely, we renormalize the Heitmann–Radin potential by subtracting the minimal energy per particle, i.e. the so-called kissing number. For configurations whose energy scales like the perimeter, we prove a compactness result which shows the emergence of polycrystalline structures: The empirical measure converges to a set of finite perimeter, while a microscopic variable, representing the orientation of the underlying lattice, converges to a locally constant function. Whenever the limit configuration is a single crystal, i.e. it has constant orientation, we show that the $$\varGamma $$Γ-limit is the anisotropic perimeter, corresponding to the Finsler metric determined by the orientation of the single crystal.

[1]  Lucia De Luca,et al.  Crystallization in Two Dimensions and a Discrete Gauss–Bonnet Theorem , 2016, J. Nonlinear Sci..

[2]  Mathieu Lewin,et al.  The Crystallization Conjecture: A Review , 2015, 1504.01153.

[3]  Thomas C. Hales,et al.  The Honeycomb Conjecture , 1999, Discret. Comput. Geom..

[4]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .

[5]  菊地 光嗣,et al.  書評 L.Ambrosio, N.Fusco and D.Pallara: Functions of Bounded Variation and Free Discontinuity Problems , 2002 .

[6]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[7]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[8]  M. Ponsiglione,et al.  Derivation of Linearised Polycrystals from a 2D system of edge dislocations , 2018, 1805.04484.

[9]  S. Luckhaus,et al.  An Energy Estimate for Dislocation Configurations and the Emergence of Cosserat-Type Structures in Metal Plasticity , 2016, 1608.06155.

[10]  G. Friesecke,et al.  Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape , 2009, 0909.0927.

[11]  Irene Fonseca,et al.  A uniqueness proof for the Wulff Theorem , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  F. Theil A Proof of Crystallization in Two Dimensions , 2006 .

[13]  Ulisse Stefanelli,et al.  Sharp $$N^{3/4}$$N3/4 Law for the Minimizers of the Edge-Isoperimetric Problem on the Triangular Lattice , 2017, J. Nonlinear Sci..

[14]  Andrea Braides,et al.  Density of polyhedral partitions , 2017, 2105.14530.

[15]  Charles Radin,et al.  The ground state for sticky disks , 1980 .

[16]  Classification of Particle Numbers with Unique Heitmann–Radin Minimizer , 2017, 1701.07231.

[17]  Charles Radin,et al.  The ground state for soft disks , 1981 .

[18]  F. Maggi,et al.  A sharp quantitative version of Hales' isoperimetric honeycomb theorem , 2014, 1410.6128.