Optimized Local Synthetic Conditions Induce Size Reduction and Phase Purification in {[Fe(Htrz)2(trz)](BF4)}n Spin Crossover Particles

[1]  R. Córdoba,et al.  Electrical Sensing of the Thermal and Light‐Induced Spin Transition in Robust Contactless Spin‐Crossover/Graphene Hybrid Devices , 2022, Advanced materials.

[2]  S. Marre,et al.  One-Step Synthesis of Spin Crossover Nanoparticles Using Flow Chemistry and Supercritical CO2. , 2020, Chemistry.

[3]  M. Mannini,et al.  Sonocrystallization as an Efficient Way to Control the Size, Morphology, and Purity of Coordination Compound Microcrystallites: Application to a Single-Chain Magnet. , 2020, Inorganic chemistry.

[4]  M. Ruben,et al.  Sublimable Spin‐Crossover Complexes: From Spin‐State Switching to Molecular Devices , 2019, Angewandte Chemie.

[5]  E. Coronado Molecular magnetism: from chemical design to spin control in molecules, materials and devices , 2019, Nature Reviews Materials.

[6]  L. Salmon,et al.  Spin-crossover nanoparticles and nanocomposite materials , 2018, Comptes Rendus Chimie.

[7]  T. Gerven,et al.  Reducing the Induction Time Using Ultrasound and High-Shear Mixing in a Continuous Crystallization Process , 2018, Crystals.

[8]  J. Lagoute,et al.  Molecular electronics: Scanning tunneling microscopy and single-molecule devices , 2018, Comptes Rendus Chimie.

[9]  K. Suslick,et al.  The Effects of Ultrasound on Crystals: Sonocrystallization and Sonofragmentation , 2018, Crystals.

[10]  W. Nicolazzi,et al.  Spin Crossover Nanomaterials: From Fundamental Concepts to Devices , 2018, Advanced materials.

[11]  T. Mallah,et al.  Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications , 2017 .

[12]  E. Lebraud,et al.  Spray-Drying to Get Spin-Crossover Materials , 2017, Materials.

[13]  T. Gerven,et al.  Sonofragmentation: Effect of Ultrasound Frequency and Power on Particle Breakage , 2016 .

[14]  J. Jordens,et al.  The effects of ultrasound on micromixing. , 2016, Ultrasonics sonochemistry.

[15]  J. Let́ard,et al.  Rational Control of Spin-Crossover Particle Sizes: From Nano- to Micro-Rods of [Fe(Htrz)2(trz)](BF4) , 2016 .

[16]  Azzedine Bousseksou,et al.  Spin Crossover at the Nanometre Scale , 2013 .

[17]  Jean-François Létard,et al.  Crystal Structures and Spin Crossover in the Polymeric Material [Fe(Htrz)2(trz)](BF4) Including Coherent-Domain Size Reduction Effects , 2013 .

[18]  S. Hébert,et al.  Room temperature bistability with wide thermal hysteresis in a spin crossover silica nanocomposite , 2013 .

[19]  G. Molnár,et al.  Synthesis of spin-crossover nano- and micro-objects in homogeneous media. , 2012, Chemistry.

[20]  A. Bousseksou,et al.  Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles. , 2011, Chemical communications.

[21]  Azzedine Bousseksou,et al.  Molecular spin crossover phenomenon: recent achievements and prospects. , 2011, Chemical Society reviews.

[22]  C. Faulmann,et al.  A facile route for the preparation of nanoparticles of the spin-crossover complex [Fe(Htrz)2(trz)](BF4) in xerogel transparent composite films. , 2011, Dalton transactions.

[23]  P. Gütlich,et al.  Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers , 2010 .

[24]  Eugenio Coronado,et al.  Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. , 2010, Inorganic chemistry.

[25]  M D Luque de Castro,et al.  Ultrasound-assisted crystallization (sonocrystallization). , 2007, Ultrasonics sonochemistry.

[26]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .

[27]  Armel Le Bail,et al.  Whole powder pattern decomposition methods and applications: A retrospection , 2005, Powder Diffraction.

[28]  K. Suslick,et al.  Applications of Ultrasound to Materials Chemistry , 1995 .

[29]  Azzedine Bousseksou,et al.  Spin Transitions and Thermal Hysteresis in the Molecular-Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2.cntdot.H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato) , 1994 .

[30]  K. Suslick,et al.  The sonochemical hot spot , 1987 .

[31]  J. G. Haasnoot,et al.  1,2,4-Triazole Complexes, III Complexes of Transition Metal(II) Nitrates and Fluoroborates , 1977 .

[32]  O. Stéphan,et al.  Core-multishell magnetic coordination nanoparticles: toward multifunctionality on the nanoscale. , 2009, Angewandte Chemie.