Globally optimal direction fields

We present a method for constructing smooth n-direction fields (line fields, cross fields, etc.) on surfaces that is an order of magnitude faster than state-of-the-art methods, while still producing fields of equal or better quality. Fields produced by the method are globally optimal in the sense that they minimize a simple, well-defined quadratic smoothness energy over all possible configurations of singularities (number, location, and index). The method is fully automatic and can optionally produce fields aligned with a given guidance field such as principal curvature directions. Computationally the smoothest field is found via a sparse eigenvalue problem involving a matrix similar to the cotan-Laplacian. When a guidance field is present, finding the optimal field amounts to solving a single linear system.

[1]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[2]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[3]  E. Zhang,et al.  Rotational symmetry field design on surfaces , 2007, SIGGRAPH 2007.

[4]  Leonidas J. Guibas,et al.  On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.

[5]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[6]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[7]  R. Macneal The solution of partial differential equations by means of electrical networks , 1949 .

[8]  Eugene Zhang,et al.  Hexagonal Global Parameterization of Arbitrary Surfaces , 2012, IEEE Trans. Vis. Comput. Graph..

[9]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[10]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[11]  S. Lang Complex Analysis , 1977 .

[12]  Eugene Zhang,et al.  Hexagonal Global Parameterization of Arbitrary Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[13]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[14]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[15]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[16]  T. Napier,et al.  An introduction to Riemann surfaces , 2012 .

[17]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[18]  Chen Ling,et al.  Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations , 2009, SIAM J. Optim..

[19]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[20]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[21]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[22]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[23]  David Bommes,et al.  Practical Mixed-Integer Optimization for Geometry Processing , 2010, Curves and Surfaces.

[24]  Hugues Hoppe,et al.  Appearance-space texture synthesis , 2006, SIGGRAPH 2006.

[25]  Sylvain Lefebvre,et al.  Appearance-space texture synthesis , 2006, ACM Trans. Graph..

[26]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[27]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[28]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[29]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[30]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[31]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[32]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[33]  W. Wirtinger Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen , 1927 .

[34]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[35]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..