Self‐organized van der Waals epitaxy of layered chalcogenide structures

Highly oriented Sb2Te3 films were successfully deposited by RF-magnetron sputtering on both crystalline and amorphous substrates. A novel deposition mechanism and method are proposed based on van der Waals epitaxy. Due to the selective reactivity of the top surface atoms of the substrate with sputtered atoms, a Te monolayer is the first layer formed on the substrate, resulting in the subsequent layer-by-layer growth of the Sb2Te3 film independent of the crystallinity of the substrates. We believe that this method can be applied to the mass production of a wide range of various van der Waals solids, such as transition metal dichalcogenides and topological insulators for future electronics devices.

[1]  J. Eroms,et al.  A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy , 2013, 1310.8470.

[2]  R J Cava,et al.  Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. , 2009, Physical review letters.

[3]  Q. Xue,et al.  Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. , 2011, Physical review letters.

[4]  Zhehui Wang,et al.  Growth characteristics of topological insulator Bi2Se3 films on different substrates , 2011 .

[5]  Chan Park,et al.  Deposition of Nanocrystalline Bi2Te3 Films Using a Modified MOCVD System , 2011 .

[6]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[7]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[8]  D. A. Wright Thermoelectric Properties of Bismuth Telluride and its Alloys , 1958, Nature.

[9]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[10]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[11]  B. Kooi,et al.  Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. , 2014, Nano letters.

[12]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[13]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[14]  A. Kolobov,et al.  Ab‐initio calculations and structural studies of (SiTe)2(Sb2Te3)n (n: 1, 2, 4 and 6) phase‐change superlattice films , 2014 .

[15]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[16]  Kornelius Nielsch,et al.  Deposition of topological insulator Sb2Te3 films by an MOCVD process , 2014 .

[17]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[18]  A. V. Kolobov,et al.  Enhanced crystallization of GeTe from an Sb2Te3 template , 2012 .

[19]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[20]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[21]  H. Krause,et al.  Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds , 1974 .

[22]  Haiyang Li,et al.  The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator , 2010, 1005.0449.

[23]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[24]  Yoichi Ando,et al.  Topological Insulator Materials , 2013, 1304.5693.

[25]  C. D. Thurmond,et al.  Germanium and silicon liquidus curves , 1960 .

[26]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[27]  S. Picozzi,et al.  Toward Truly Single Crystalline GeTe Films: The Relevance of the Substrate Surface , 2014 .

[28]  X. Dai,et al.  Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3 , 2009 .

[29]  X. Dai,et al.  Quintuple-layer epitaxy of high-quality Bi2Se3 thin films for topological insulator , 2009, 0906.5306.

[30]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[31]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[32]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[33]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[34]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[35]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[36]  Kang L. Wang,et al.  Review of 3D topological insulator thin‐film growth by molecular beam epitaxy and potential applications , 2013 .

[37]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[38]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[39]  Khalil Najafi,et al.  Low-temperature characterization and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films , 2008 .

[40]  L. G. Bailey Preparation and properties of silicon telluride , 1966 .

[41]  Kazumasa Sunouchi,et al.  Fabrication and characterization of heterostructures with subnanometer thickness , 1984 .

[42]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[43]  L. Kienle,et al.  Current Status in Fabrication, Structural and Transport Property Characterization, and Theoretical Understanding of Bi2Te3 / Sb2Te3 Superlattice Systems , 2012 .

[44]  J. Verble,et al.  Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2 , 1972 .

[45]  Mustafa Lotya,et al.  Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersability of Exfoliated Nanosheets Varies Only Weakly between Compounds /v Sol (mol/ml) Characterisation of Dispersions , 2022 .

[46]  E. Koukharenko,et al.  Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity , 2015 .