Schwarz Domain Decomposition Preconditioners for Plane Wave Discontinuous Galerkin Methods

We construct Schwarz domain decomposition preconditioners for plane wave discontinuous Galerkin methods for Helmholtz boundary value problems. In particular, we consider additive and multiplicative non-overlapping Schwarz methods. Numerical tests show good performance of these preconditioners when solving the linear system of equations with GMRES.

[1]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[2]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[3]  P. Monk,et al.  Error estimates for the ultra weak variational formulation in linear elasticity , 2013 .

[4]  Charbel Farhat,et al.  Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..

[5]  Charbel Farhat,et al.  A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers , 2009 .

[6]  Xiaobing Feng,et al.  Two-Level Additive Schwarz Methods for a Discontinuous Galerkin Approximation of Second Order Elliptic Problems , 2001, SIAM J. Numer. Anal..

[7]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[8]  Peter Monk,et al.  Solving Maxwell's equations using the ultra weak variational formulation , 2007, J. Comput. Phys..

[9]  Xiao,et al.  MULTIPLICATIVE SCHWARZ ALGORITHMS FOR SOME NONSYMMETRIC AND INDEFINITE PROBLEMS , 1993 .

[10]  Jari P. Kaipio,et al.  The Ultra-Weak Variational Formulation for Elastic Wave Problems , 2004, SIAM J. Sci. Comput..

[11]  Peter Monk,et al.  Improvements for the ultra weak variational formulation , 2013 .

[12]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[13]  Stefano Giani,et al.  Domain Decomposition Preconditioners for Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, Journal of Scientific Computing.

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[16]  Paola F. Antonietti,et al.  Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case , 2007 .

[17]  J. Kaipio,et al.  Computational aspects of the ultra-weak variational formulation , 2002 .

[18]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[19]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[20]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[21]  Charbel Farhat,et al.  Three‐dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid‐frequency Helmholtz problems , 2006 .

[22]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[23]  Olivier Cessenat,et al.  Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques : problèmes de Helmholtz 2D et de Maxwell 3D , 1996 .

[24]  R. Hiptmair,et al.  Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes , 2014 .

[25]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[26]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[27]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[28]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[29]  Bruno Després,et al.  Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .

[30]  Martin J. Gander,et al.  Domain Decomposition Methods in Science and Engineering XXI , 2014 .

[31]  Block Jacobi Relaxation for Plane Wave Discontinuous Galerkin Methods , 2014 .

[32]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[33]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[34]  Ralf Hiptmair,et al.  Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations , 2011, Math. Comput..

[35]  Peter Monk,et al.  ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION OF THE HELMHOLTZ EQUATION , 2007 .

[36]  Jorg Liesen,et al.  The field of values bound on ideal GMRES , 2012, 1211.5969.

[37]  Paul Houston,et al.  A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods , 2011, J. Sci. Comput..