EXPLICIT STAGGERED SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS

We review in this paper an explicit scheme for the numerical simulation of inviscid com- pressible flows; we analyze it for both the barotropic Euler equations and the full Euler equations for an ideal gas. In each case, we summarize the theoretical results that were recently obtained concerning the stability and consistency of the schemes and present some numerical results which confirm their good performance.

[1]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[2]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[3]  Raphaele Herbin,et al.  An unconditionnally stable pressure correction scheme for compressible barotropic Navier-Stokes equations , 2007, 0710.2987.

[4]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[5]  Kinetic energy control in the MAC discretization of compressible Navier-Stokes equations , 2010 .

[6]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[7]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[8]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[9]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[10]  R. Herbin,et al.  Staggered discretizations, pressure correction schemes and all speed barotropic flows , 2011 .

[11]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[12]  T. Gallouët,et al.  AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .

[13]  Jean-Claude Latché,et al.  An L2‐stable approximation of the Navier–Stokes convection operator for low‐order non‐conforming finite elements , 2011 .

[14]  R. Herbin,et al.  Consistent explicit staggered schemes for compressible flows Part II: the Euler equation , 2013 .

[15]  Raphaèle Herbin,et al.  A discretization of phase mass balance in fractional step algorithms for the drift-flux model , 2017 .

[16]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[17]  Raphaèle Herbin,et al.  STAGGERED SCHEMES FOR ALL SPEED FLOWS , 2012 .

[18]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[19]  R. Herbin,et al.  CONSISTENT SEMI-IMPLICIT STAGGERED SCHEMES FOR COMPRESSIBLE FLOWS PART II: EULER EQUATIONS. , 2012 .

[20]  R. Herbin,et al.  CONSISTENT SEMI-IMPLICIT STAGGERED SCHEMES FOR COMPRESSIBLE FLOWS PART I: THE BAROTROPIC EULER EQUATIONS. , 2012 .