Error analysis of a class of derivative estimators for noisy signals and applications. (Analyse d'Erreurs d'Estimateurs des Dérivées de Signaux Bruités et Applications)

Recent algebraic parametric estimation techniques (see (10,11)) led to point-wise derivative estimates by using only the iterated integral of a noisy observation signal (see (24,25)). In this paper, we extend such differentiation methods by providing a larger choice of parameters in these integrals: they can be reals. For this, the extension is done via a truncated Jacobi orthogonal series expansion. Then, the noise error contribution of these derivative estimations is investigated: after proving the existence of such integral with a stochastic process noise, their statistical properties (mean value, variance and covariance) are analyzed. In particular, the following important results are obtained: a) the bias error term, due to the truncation, can be reduced by tuning the parameters, b) such estimators can cope with a large class of noises for which the mean and covariance are polynomials in time (with degree smaller than the order of derivative to be estimated), c) the variance of the noise error is shown to be smaller in the case of negative real parameters than it was in (24,25) for integer values.

[1]  Dayan Liu,et al.  An error analysis in the algebraic estimation of a noisy sinusoidal signal , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[2]  C. W. Liu,et al.  A Precise Calculation of Power System Frequency , 2001, IEEE Power Engineering Review.

[3]  Chun-Te Chen,et al.  Design of high-order digital differentiators using L/sub 1/ error criteria , 1995 .

[4]  Maria D. Miranda,et al.  Algebraic parameter estimation of damped exponentials , 2007, 2007 15th European Signal Processing Conference.

[5]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[6]  R. Gorenflo,et al.  Abel Integral Equations: Analysis and Applications , 1991 .

[7]  D. Sgro,et al.  Modulating functions method plus SOGI scheme for signal tracking , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[8]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Walter Gautschi,et al.  Approximation and Computation , 2011 .

[10]  C. Lanczos Applied Analysis , 1961 .

[11]  Yacine Chitour,et al.  Time-varying high-gain observers for numerical differentiation , 2002, IEEE Trans. Autom. Control..

[12]  Chu-Li Fu,et al.  A modified method for high order numerical derivatives , 2006, Appl. Math. Comput..

[13]  M. Fliess,et al.  Compression différentielle de transitoires bruités , 2004 .

[14]  Adam Loverro,et al.  Fractional Calculus : History , Definitions and Applications for the Engineer , 2004 .

[15]  J R Jordan,et al.  A modulating-function method for on-line fault detection (machinery health monitoring) , 1986 .

[16]  M. Fliess,et al.  Questioning some paradigms of signal processing via concrete examples , 2003 .

[17]  C. Fu,et al.  Wavelets and high order numerical differentiation , 2010 .

[18]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[19]  Pooi Yuen Kam,et al.  MAP/ML Estimation of the Frequency and Phase of a Single Sinusoid in Noise , 2007, IEEE Transactions on Signal Processing.

[20]  G. Rao,et al.  Improved algorithms for parameter identification in continuous systems via Walsh functions , 1983 .

[21]  Olivier Gibaru,et al.  Convergence Rate of the Causal Jacobi Derivative Estimator , 2010, Curves and Surfaces.

[22]  Frankie K. W. Chan,et al.  A generalized weighted linear predictor frequency estimation approach for a complex sinusoid , 2006, IEEE Transactions on Signal Processing.

[23]  R. Ohba,et al.  New finite difference formulas for numerical differentiation , 2000 .

[24]  Olivier Gibaru,et al.  Error analysis for a class of numerical differentiator: application to state observation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[25]  Lu Yang,et al.  A perturbation method for numerical differentiation , 2008, Appl. Math. Comput..

[26]  R. Qu A new approach to numerical differentiation and integration , 1996 .

[27]  H. Mantsch,et al.  Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours , 1981 .

[28]  Kaladhar Voruganti,et al.  Volume I , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[29]  J. Grizzle,et al.  On numerical differentiation algorithms for nonlinear estimation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[30]  I. Obrusník,et al.  General Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method , 1990 .

[31]  M. Fliess,et al.  A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.

[32]  Salim Ibrir,et al.  Online exact differentiation and notion of asymptotic algebraic observers , 2003, IEEE Trans. Autom. Control..

[33]  H. Khalil,et al.  Discrete-time implementation of high-gain observers for numerical differentiation , 1999 .

[34]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[35]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[36]  M. Fliess,et al.  Reconstructeurs d'état , 2004 .

[37]  H. Sira-Ramírez,et al.  A fast on-line frequency estimator of lightly damped vibrations in flexible structures , 2007 .

[38]  Sudarshan P. Purushothaman,et al.  Lanczos' generalized derivative for higher orders , 2005 .

[39]  J. R. Jordan,et al.  System identification with Hermite modulating functions , 1990 .

[40]  Leland B. Jackson,et al.  Approximating Noncausal IIR Digital Filters Having Arbitrary Poles, Including New Hilbert Transformer Designs, Via Forward/Backward Block Recursion , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  Ronald H. Brown,et al.  Analysis of algorithms for velocity estimation from discrete position versus time data , 1992, IEEE Trans. Ind. Electron..

[42]  Y. Hon,et al.  Reconstruction of numerical derivatives from scattered noisy data , 2005 .

[43]  Rahul Kumar,et al.  One-sided finite-difference approximations suitable for use with Richardson extrapolation , 2006, J. Comput. Phys..

[44]  Alexander G. Ramm,et al.  On stable numerical differentiation , 2001, Math. Comput..

[45]  Jonathan Becedas,et al.  Adaptive Controller for Single-Link Flexible Manipulators Based on Algebraic Identification and Generalized Proportional Integral Control , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  E. Sontag,et al.  Generalized Controller Canonical Forms for Linear and Nonlinear Dynamics , 1990 .

[47]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[48]  Ishtiaq Rasool Khan,et al.  New nite di erence formulas for numerical di erentiation , 2000 .

[49]  Michel Fliess Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.

[50]  D. Murio,et al.  Discrete mollification and automatic numerical differentiation , 1998 .

[51]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[52]  Jessy W. Grizzle,et al.  Interpolation and numerical differentiation for observer design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[53]  Zewen Wang,et al.  Numerical differentiation for high orders by an integration method , 2010, J. Comput. Appl. Math..

[54]  Yang Wang,et al.  A numerical differentiation method and its application to reconstruction of discontinuity , 2002 .

[55]  X. Shao,et al.  A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform , 2000, Fresenius' journal of analytical chemistry.

[56]  Mohamad Adnan Al-Alaoui,et al.  A class of second-order integrators and low-pass differentiators , 1995 .

[57]  Chin-Teng Lin,et al.  Fundamental frequency estimation based on the joint time-frequency analysis of harmonic spectral structure , 2001, IEEE Trans. Speech Audio Process..

[58]  M. A Course of Pure Mathematics , 1909, Nature.

[59]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[60]  Jean-Pierre Barbot,et al.  An algebraic framework for the design of nonlinear observers with unknown inputs , 2007, 2007 46th IEEE Conference on Decision and Control.

[61]  Anssi Klapuri,et al.  Multiple fundamental frequency estimation based on harmonicity and spectral smoothness , 2003, IEEE Trans. Speech Audio Process..

[62]  Chien-Cheng Tseng,et al.  Digital differentiator design using fractional delay filter and limit computation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[63]  Chu-Li Fu,et al.  A wavelet-Galerkin method for high order numerical differentiation , 2010, Appl. Math. Comput..

[64]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[65]  Olivier Gibaru,et al.  Parameters estimation of a noisy sinusoidal signal with time-varying amplitude , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[66]  G. Nakamura,et al.  Numerical differentiation for the second order derivatives of functions of two variables , 2008 .

[67]  Elias Zakon Mathematical Analysis, Volume I , 2004 .

[68]  Esteban I. Poffald The remainder in Taylor's formula , 1990 .

[69]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[70]  Giuseppe Fedele,et al.  A recursive scheme for frequency estimation using the modulating functions method , 2010, Appl. Math. Comput..

[71]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[72]  M.R. Iravani,et al.  Estimation of frequency and its rate of change for applications in power systems , 2004, IEEE Transactions on Power Delivery.

[73]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[74]  Otmar Scherzer,et al.  Inverse Problems Light: Numerical Differentiation , 2001, Am. Math. Mon..

[75]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[76]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[77]  D. C. Joyce Survey of Extrapolation Processes in Numerical Analysis , 1971 .

[78]  Salim Ibrir,et al.  Linear time-derivative trackers , 2004, Autom..

[79]  Giuseppe Fedele,et al.  A Power Electrical Signal Tracking Strategy Based on the Modulating Functions Method , 2009, IEEE Transactions on Industrial Electronics.

[80]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[81]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[82]  Jun Yu,et al.  Improved maximum frequency estimation with application to instantaneous mean frequency estimation of surface electromyography , 2004, IEEE Transactions on Biomedical Engineering.

[83]  Sridhar Ungarala,et al.  Batch scheme recursive parameter estimation of continuous-time systems using the modulating functions method , 1997, Autom..

[84]  Alexander Kai-man Leung,et al.  Wavelet Transform: A Method for Derivative Calculation in Analytical Chemistry , 1998 .

[85]  Ta-Hsin Li,et al.  Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise , 2009, IEEE Transactions on Signal Processing.

[86]  Giuseppe Fedele,et al.  Multi-sinusoidal signal estimation by an adaptive SOGI-filters bank , 2009 .

[87]  D. Piester,et al.  A straightforward frequency-estimation technique for GPS carrier-phase time transfer , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[88]  Vicente Feliú Batlle,et al.  An algebraic frequency estimator for a biased and noisy sinusoidal signal , 2007, Signal Process..

[89]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[90]  Qing Zhang,et al.  Noise analysis of an algorithm for uncertain frequency identification , 2006, IEEE Transactions on Automatic Control.

[91]  Zewen Wang,et al.  Identification of the pollution source from one-dimensional parabolic equation models , 2012, Appl. Math. Comput..

[92]  G. Rao,et al.  Identification of deterministic time-lag systems , 1976 .

[93]  Lei Nie,et al.  Approximate Derivative Calculated by Using Continuous Wavelet Transform , 2002, J. Chem. Inf. Comput. Sci..

[94]  P. Barak Smoothing and Differentiation by an Adaptive-Degree Polynomial Filter , 1995 .

[95]  Xiang-Tuan Xiong,et al.  Fourier truncation method for high order numerical derivatives , 2006, Appl. Math. Comput..

[96]  ChengMu-Huo,et al.  A new IIR adaptive notch filter , 2006 .

[97]  Michel Loève,et al.  Probability Theory I , 1977 .

[98]  Vicente Feliú Batlle,et al.  Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique , 2009, Autom..

[99]  H. Reinhardt,et al.  Regularization of a non-characteristic Cauchy problem for a parabolic equation , 1995 .

[100]  Sridhar Ungarala,et al.  Time-varying system identification using modulating functions and spline models with application to bio-processes , 2000 .

[101]  Peter C. Müller,et al.  A simple improved velocity estimation for low-speed regions based on position measurements only , 2006, IEEE Transactions on Control Systems Technology.

[102]  M. A. Wolfe A first course in numerical analysis , 1972 .

[103]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[104]  M. Mboup Parameter estimation for signals described by differential equations , 2009 .

[105]  Michel Fliess Critique du rapport signal à bruit en théorie de l'information -- A critical appraisal of the signal to noise ratio in information theory , 2007, ArXiv.

[106]  Hebertt Sira-Ramírez,et al.  Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques , 2007 .

[107]  Fliess Michel,et al.  Control via state estimations of some nonlinear systems , 2004 .

[108]  Wu Jiekang,et al.  High-accuracy, wide-range frequency estimation methods for power system signals under nonsinusoidal conditions , 2005, IEEE Transactions on Power Delivery.

[109]  Olivier Gibaru,et al.  Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.

[110]  Alireza R. Bakhshai,et al.  An adaptive notch filter for frequency estimation of a periodic signal , 2004, IEEE Transactions on Automatic Control.

[111]  Diego A. Murio,et al.  The Mollification Method and the Numerical Solution of Ill-Posed Problems , 1993 .

[112]  F. Diener,et al.  Nonstandard Analysis in Practice , 1995 .

[113]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[114]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[115]  M. Fliess,et al.  An algebraic receiver for full response CPM demodulation , 2006, 2006 International Telecommunications Symposium.

[116]  F. Hoog,et al.  A stable finite difference ansatz for higher order differentiation of non-exact data , 1998, Bulletin of the Australian Mathematical Society.

[117]  J. N. Lynessy Finite-part Integrals and the Euler-maclaurin Expansion , 1994 .

[118]  J. Cunningham History , 2007, The Journal of Hellenic Studies.