BOUT++: A framework for parallel plasma fluid simulations

Abstract A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak x -point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag–Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors. Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement ( γ BOUT++ = 0.245 ω A , γ ELITE = 0.239 ω A , with Alfvenic timescale 1 / ω A = R / V A ). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.

[1]  Peter J. Catto,et al.  A drift ordered short mean free path description for magnetized plasma allowing strong spatial anisotropy , 2003 .

[2]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[3]  Arie Shoshani,et al.  Coupled simulation of kinetic pedestal growth and MHD ELM crash , 2007 .

[4]  M. V. Umansky,et al.  Suite of Verification Test Problems for Edge Turbulence Simulations , 2008 .

[5]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[6]  Bruce D. Scott,et al.  Free-energy conservation in local gyrofluid models , 2005 .

[7]  Scott Kruger,et al.  Computing nonlinear magnetohydrodynamic edge localized instabilities in fusion plasmas , 2006 .

[8]  Scott Kruger,et al.  Modelling of ELM dynamics for DIII-D and ITER , 2007 .

[9]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[10]  Ronald H. Cohen,et al.  Low-to-high confinement transition simulations in divertor geometry , 2000 .

[11]  Paul F. Dubois,et al.  Software for Portable Scientific Data Management , 1993 .

[12]  M. Almond,et al.  Computers in Physics , 1971 .

[13]  H. R. Wilson,et al.  Toroidal coupling of ideal magnetohydrodynamic instabilities in tokamak plasmas , 1996 .

[14]  H R Wilson,et al.  Theory for explosive ideal magnetohydrodynamic instabilities in plasmas. , 2004, Physical review letters.

[15]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[16]  L. L. LoDestro,et al.  Status and verification of edge plasma turbulence code BOUT , 2009, Comput. Phys. Commun..

[17]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[18]  William H. Press,et al.  Numerical recipes in C , 2002 .

[19]  P. C. Stangeby,et al.  Particle and parallel momentum balance equations with inclusion of drifts, for modelling strong- to weakly-collisional edge plasmas , 2006 .

[20]  Ronald H. Cohen,et al.  Scrape‐Off Layer Turbulence Theory and Simulations , 1997 .

[21]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[22]  W. D’haeseleer,et al.  Flux Coordinates and Magnetic Field Structure , 1991 .

[23]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[24]  Ping Zhu,et al.  Intermediate nonlinear regime of a line-tied g mode , 2007 .

[25]  Hrvoje Jasak,et al.  In-Cylinder CFD Simulation Using a C++ Object-Oriented Toolkit , 2004 .

[26]  Peter Stott Tokamaks (Second Edition) , 1998 .

[27]  Bill Scott,et al.  Gyrokinetic study of the edge shear layer , 2006 .

[28]  A. Gosman,et al.  High resolution NVD differencing scheme for arbitrarily unstructured meshes , 1999 .

[29]  Dimits Fluid simulations of tokamak turbulence in quasiballooning coordinates. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  R. L. Miller,et al.  Magnetohydrodynamic stability of tokamak edge plasmas , 1998 .

[31]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[32]  Ronald H. Cohen,et al.  Turbulence in boundary plasmas , 1999 .

[33]  A. Hindmarsh,et al.  Application of parallel implicit methods to edge-plasma numerical simulations , 2002 .

[34]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[35]  P. Snyder,et al.  Progress in the peeling-ballooning model of edge localized modes: Numerical studies of nonlinear dynamicsa) , 2005 .

[36]  Scott Kruger,et al.  Two-Fluid Studies of Edge Relaxation Events in Tokamaks , 2007 .

[37]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[38]  R. Scannell,et al.  Evolution of filament structures during edge-localized modes in the MAST Tokamak. , 2006, Physical review letters.

[39]  H. Wilson,et al.  Numerical studies of edge localized instabilities in tokamaks , 2002 .

[40]  P. Catto,et al.  Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals , 2003 .

[41]  L. C. Woods Physics of plasmas , 2003 .

[42]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[43]  G. Huysmans,et al.  MHD stability in X-point geometry: simulation of ELMs , 2007 .

[44]  Moujin Zhang,et al.  Solving the MHD equations by the space-time conservation element and solution element method , 2006, J. Comput. Phys..

[45]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[46]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[47]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[48]  S. Brown Portable Application Code Toolkit , 2009 .