BOUT++: A framework for parallel plasma fluid simulations
暂无分享,去创建一个
P. B. Snyder | M. V. Umansky | Ben Dudson | X. Q. Xu | H. R. Wilson | P. Snyder | X. Xu | H. Wilson | B. Dudson | M. Umansky | UK H.R.WilsonUniversityofYork | Lawrence Livermore National Laboratory Usa | General Atomics Usa
[1] Peter J. Catto,et al. A drift ordered short mean free path description for magnetized plasma allowing strong spatial anisotropy , 2003 .
[2] Hrvoje Jasak,et al. A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .
[3] Arie Shoshani,et al. Coupled simulation of kinetic pedestal growth and MHD ELM crash , 2007 .
[4] M. V. Umansky,et al. Suite of Verification Test Problems for Edge Turbulence Simulations , 2008 .
[5] Steven J. Plimpton,et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .
[6] Bruce D. Scott,et al. Free-energy conservation in local gyrofluid models , 2005 .
[7] Scott Kruger,et al. Computing nonlinear magnetohydrodynamic edge localized instabilities in fusion plasmas , 2006 .
[8] Scott Kruger,et al. Modelling of ELM dynamics for DIII-D and ITER , 2007 .
[9] S. Orszag,et al. Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.
[10] Ronald H. Cohen,et al. Low-to-high confinement transition simulations in divertor geometry , 2000 .
[11] Paul F. Dubois,et al. Software for Portable Scientific Data Management , 1993 .
[12] M. Almond,et al. Computers in Physics , 1971 .
[13] H. R. Wilson,et al. Toroidal coupling of ideal magnetohydrodynamic instabilities in tokamak plasmas , 1996 .
[14] H R Wilson,et al. Theory for explosive ideal magnetohydrodynamic instabilities in plasmas. , 2004, Physical review letters.
[15] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[16] L. L. LoDestro,et al. Status and verification of edge plasma turbulence code BOUT , 2009, Comput. Phys. Commun..
[17] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[18] William H. Press,et al. Numerical recipes in C , 2002 .
[19] P. C. Stangeby,et al. Particle and parallel momentum balance equations with inclusion of drifts, for modelling strong- to weakly-collisional edge plasmas , 2006 .
[20] Ronald H. Cohen,et al. Scrape‐Off Layer Turbulence Theory and Simulations , 1997 .
[21] Marion Kee,et al. Analysis , 2004, Machine Translation.
[22] W. D’haeseleer,et al. Flux Coordinates and Magnetic Field Structure , 1991 .
[23] P. Teuben,et al. Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.
[24] Ping Zhu,et al. Intermediate nonlinear regime of a line-tied g mode , 2007 .
[25] Hrvoje Jasak,et al. In-Cylinder CFD Simulation Using a C++ Object-Oriented Toolkit , 2004 .
[26] Peter Stott. Tokamaks (Second Edition) , 1998 .
[27] Bill Scott,et al. Gyrokinetic study of the edge shear layer , 2006 .
[28] A. Gosman,et al. High resolution NVD differencing scheme for arbitrarily unstructured meshes , 1999 .
[29] Dimits. Fluid simulations of tokamak turbulence in quasiballooning coordinates. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[30] R. L. Miller,et al. Magnetohydrodynamic stability of tokamak edge plasmas , 1998 .
[31] Francesco Miniati,et al. A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .
[32] Ronald H. Cohen,et al. Turbulence in boundary plasmas , 1999 .
[33] A. Hindmarsh,et al. Application of parallel implicit methods to edge-plasma numerical simulations , 2002 .
[34] L. Lao,et al. Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .
[35] P. Snyder,et al. Progress in the peeling-ballooning model of edge localized modes: Numerical studies of nonlinear dynamicsa) , 2005 .
[36] Scott Kruger,et al. Two-Fluid Studies of Edge Relaxation Events in Tokamaks , 2007 .
[37] P. Londrillo,et al. High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.
[38] R. Scannell,et al. Evolution of filament structures during edge-localized modes in the MAST Tokamak. , 2006, Physical review letters.
[39] H. Wilson,et al. Numerical studies of edge localized instabilities in tokamaks , 2002 .
[40] P. Catto,et al. Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals , 2003 .
[41] L. C. Woods. Physics of plasmas , 2003 .
[42] David Lovelock,et al. Tensors, differential forms, and variational principles , 1975 .
[43] G. Huysmans,et al. MHD stability in X-point geometry: simulation of ELMs , 2007 .
[44] Moujin Zhang,et al. Solving the MHD equations by the space-time conservation element and solution element method , 2006, J. Comput. Phys..
[45] W. Park,et al. Plasma simulation studies using multilevel physics models , 1999 .
[46] Paul R. Woodward,et al. On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .
[47] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[48] S. Brown. Portable Application Code Toolkit , 2009 .