The Graovac-Pisanski index of connected bipartite graphs with applications to hydrocarbon molecules
暂无分享,去创建一个
[1] F. Koorepazan-Moftakhar,et al. Combination of distance and symmetry in some molecular graphs , 2016, Appl. Math. Comput..
[2] Aleksandra Tepeh,et al. Trees with the maximal value of Graovac-Pisanski index , 2019, Appl. Math. Comput..
[3] Riste Skrekovski,et al. Mathematical aspects of fullerenes , 2016, Ars Math. Contemp..
[4] Roberto Todeschini,et al. Handbook of Molecular Descriptors , 2002 .
[5] Niko Tratnik,et al. The Graovac–Pisanski index of armchair tubulenes , 2017, Journal of Mathematical Chemistry.
[6] Niko Tratnik,et al. Predicting melting points of hydrocarbons by the Graovac-Pisanski index , 2017, 1709.01832.
[7] Sandi Klavzar,et al. Modified Wiener index via canonical metric representation, and some fullerene patches , 2016, Ars Math. Contemp..
[8] Riste Škrekovski,et al. On Diameter of Nanotubical Fullerene Graphs , 2015 .
[9] Rodolfo Pinal,et al. Effect of molecular symmetry on melting temperature and solubility. , 2004, Organic & biomolecular chemistry.
[10] Ali Reza Ashrafi,et al. Graovac–Pisanski index of fullerenes and fullerene–like molecules , 2016 .
[11] Ante Graovac,et al. On the Wiener index of a graph , 1991 .
[12] Ali Reza Ashrafi,et al. The modified Wiener index of some graph operations , 2016, Ars Math. Contemp..
[13] Modjtaba Ghorbani,et al. On the Graovac-Pisanski index , 2017 .
[14] H. Wiener. Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.
[15] Ali Reza Ashrafi,et al. Distance, Symmetry, and Topology in Carbon Nanomaterials , 2016 .
[16] A. Ashrafi,et al. Symmetry and PI Polynomials of C50+10n Fullerenes , 2014 .
[17] Ali Reza Ashrafi,et al. Topological Symmetry of Nanostructures , 2015 .
[18] N. Tratnik. The Graovac–Pisanski index of zig-zag tubulenes and the generalized cut method , 2017, Journal of Mathematical Chemistry.