Estimating lichen α- and β-diversity using satellite data at different spatial resolutions

[1]  N. Fenton,et al.  Small but visible: Predicting rare bryophyte distribution and richness patterns using remote sensing-based ensembles of small models , 2022, PloS one.

[2]  M. Kukwa,et al.  How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieża forest , 2021 .

[3]  Flavio Marzialetti,et al.  Measuring Alpha and Beta Diversity by Field and Remote-Sensing Data: A Challenge for Coastal Dunes Biodiversity Monitoring , 2021, Remote. Sens..

[4]  N. Fenton,et al.  No place to hide: Rare plant detection through remote sensing , 2021, Diversity and Distributions.

[5]  E. Tyystjärvi,et al.  Chlorophyll does not reflect green light – how to correct a misconception , 2020, Journal of Biological Education.

[6]  Philip A. Townsend,et al.  Remote Sensing of Plant Biodiversity , 2020 .

[7]  Ewa Grabska,et al.  Continuous Detection of Small-Scale Changes in Scots Pine Dominated Stands Using Dense Sentinel-2 Time Series , 2020, Remote. Sens..

[8]  Ke Xu,et al.  DeepMask: an algorithm for cloud and cloud shadow detection in optical satellite remote sensing images using deep residual network , 2019, ArXiv.

[9]  A. Huth,et al.  Inferring plant functional diversity from space: the potential of Sentinel-2 , 2019, Remote Sensing of Environment.

[10]  J. Lendemer,et al.  Lichen conservation in North America: a review of current practices and research in Canada and the United States , 2019, Biodiversity and Conservation.

[11]  Andres Kuusk,et al.  Reflectance Properties of Hemiboreal Mixed Forest Canopies with Focus on Red Edge and Near Infrared Spectral Regions , 2019, Remote. Sens..

[12]  Shruti K. Mishra,et al.  Microclimatic variations and their effects on photosynthetic efficiencies and lichen species distribution along elevational gradients in Garhwal Himalayas , 2019, Biodiversity and Conservation.

[13]  Y. Wiersma,et al.  Out with OLD growth, in with ecological contin NEW ity: new perspectives on forest conservation , 2019, Frontiers in Ecology and the Environment.

[14]  A. Beaudoin,et al.  Digital mapping of paludification in soils under black spruce forests of eastern Canada , 2018, Geoderma Regional.

[15]  S. Mérmoz,et al.  Remote sensing of &bgr;‐diversity: Evidence from plant communities in a semi‐natural system , 2018, Applied Vegetation Science.

[16]  Damaris Zurell,et al.  Outstanding Challenges in the Transferability of Ecological Models. , 2018, Trends in ecology & evolution.

[17]  B. Brisco,et al.  Spectral analysis of wetlands using multi-source optical satellite imagery , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[18]  Miska Luoto,et al.  The importance of snow in species distribution models of arctic vegetation , 2018 .

[19]  Ruben Van De Kerchove,et al.  Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data , 2018, International Journal of Applied Earth Observation and Geoinformation.

[20]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[21]  D. Wardle,et al.  How lichens impact on terrestrial community and ecosystem properties , 2017, Biological reviews of the Cambridge Philosophical Society.

[22]  Robert Lücking,et al.  Fungal Diversity Revisited: 2.2 to 3.8 Million Species , 2017, Microbiology spectrum.

[23]  Tom Carlberg Keys to Lichens of North America: Revised and Expanded , 2017, The Bryologist.

[24]  Fabian Ewald Fassnacht,et al.  The spectral variability hypothesis does not hold across landscapes , 2017 .

[25]  M. Parisien,et al.  Spatial and temporal dimensions of fire activity in the fire‐prone eastern Canadian taiga , 2017, Global change biology.

[26]  Jonah L Keim,et al.  Estimating plant abundance using inflated beta distributions: Applied learnings from a lichen–caribou ecosystem , 2016, Ecology and evolution.

[27]  R. Lücking,et al.  The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – Approaching one thousand genera , 2016, The Bryologist.

[28]  M. Rautiainen,et al.  Structural factors driving boreal forest albedo in Finland , 2016 .

[29]  Duccio Rocchini,et al.  Will remote sensing shape the next generation of species distribution models? , 2015 .

[30]  Michael Förster,et al.  Remote sensing for mapping natural habitats and their conservation status - New opportunities and challenges , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[31]  M. Parisien,et al.  Resistance of the boreal forest to high burn rates , 2014, Proceedings of the National Academy of Sciences.

[32]  N. Pettorelli,et al.  Satellite remote sensing for applied ecologists: opportunities and challenges , 2014 .

[33]  W. Elbert,et al.  Estimating impacts of lichens and bryophytes on global biogeochemical cycles , 2014 .

[34]  Andri Baltensweiler,et al.  High‐resolution remote sensing data improves models of species richness , 2013 .

[35]  C. Peng,et al.  Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges , 2013 .

[36]  M. Andreae,et al.  Contribution of cryptogamic covers to the global cycles of carbon and nitrogen , 2012 .

[37]  Julian D. Olden,et al.  Assessing transferability of ecological models: an underappreciated aspect of statistical validation , 2012 .

[38]  P. Škaloud,et al.  Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae) , 2011, Molecular ecology.

[39]  C. Marshall,et al.  Has the Earth’s sixth mass extinction already arrived? , 2011, Nature.

[40]  Markus Neteler,et al.  Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges , 2010, Ecol. Informatics.

[41]  Hannes Feilhauer,et al.  Mapping continuous fields of forest alpha and beta diversity , 2009 .

[42]  Jianting Zhang,et al.  Is spectral distance a proxy of beta diversity at different taxonomic ranks? A test using quantile regression , 2009, Ecol. Informatics.

[43]  Eva Ivits,et al.  Prediction of lichen diversity in an UNESCO biosphere reserve – correlation of high resolution remote sensing data with field samples , 2007 .

[44]  Youngwook Kim,et al.  2-band enhanced vegetation index without a blue band and its application to AVHRR data , 2007, SPIE Optical Engineering + Applications.

[45]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[46]  J. Elith,et al.  Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment , 2007 .

[47]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[48]  Duccio Rocchini,et al.  Maximizing plant species inventory efficiency by means of remotely sensed spectral distances , 2005 .

[49]  D. Vitt,et al.  The ones we left behind: Comparing plot sampling and floristic habitat sampling for estimating bryophyte diversity , 2005 .

[50]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[51]  Lars T. Waser,et al.  Prediction of biodiversity - regression of lichen species richness on remote sensing data , 2004 .

[52]  J. Kerr,et al.  From space to species: ecological applications for remote sensing , 2003 .

[53]  M. Fladeland,et al.  Remote sensing for biodiversity science and conservation , 2003 .

[54]  Kenneth J. Ranson,et al.  Disturbance recognition in the boreal forest using radar and Landsat-7 , 2003 .

[55]  M. Hunter,et al.  Enlisting Taxonomists to Survey Poorly Known Taxa for Biodiversity Conservation: a Lichen Case Study , 2002 .

[56]  V. Ahmadjian Lichens are more important than you think , 1995 .

[57]  L. Tibell Crustose lichens as indicators of forest continuity in boreal coniferous forests , 1992 .

[58]  G. Guyot,et al.  Physical measurements and signatures in remote sensing , 1992 .

[59]  R. Whittaker Evolution and measurement of species diversity , 1972 .

[60]  R. Whittaker Vegetation of the Siskiyou Mountains, Oregon and California , 1960 .

[61]  P. Legendre Numerical Ecology , 2019, Encyclopedia of Ecology.

[62]  O. Mutanga,et al.  Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. , 2018 .

[63]  D. Boscolo,et al.  Influence of landscape structure on Euglossini composition in open vegetation environments , 2017 .

[64]  D. Edwards,et al.  How Should Beta-Diversity Inform Biodiversity Conservation? , 2016, Trends in ecology & evolution.

[65]  Duccio Rocchini,et al.  Advancing species diversity estimate by remotely sensed proxies: A conceptual review , 2015, Ecol. Informatics.

[66]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[67]  Ian C. Marschner,et al.  glm2: Fitting Generalized Linear Models with Convergence Problems , 2011, R J..

[68]  M. Lakatos Lichens and Bryophytes: Habitats and Species , 2011 .

[69]  A. Thell,et al.  Nordic Lichen Flora Volume 4 – Parmeliaceae , 2011 .

[70]  Kate S. He,et al.  Linking variability in species composition and MODIS NDVI based on beta diversity measurements , 2009 .

[71]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[72]  M. Seaward The use of lichens for environmental impact assessment , 2004 .

[73]  T. Sharkey,et al.  Chloroplast to Leaf , 2004 .

[74]  R. D. Boertje,et al.  Seasonal Diets of the Denali Caribou Herd, Alaska , 1984 .