Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis

Abstract CO2 separation plays an important role in energy saving and CO2 emission reduction, both of which are necessary to address the issue of global warming. Ionic liquids (ILs) have been proposed to be “green” solvents for CO2 separation. Unfortunately, the high cost, toxicity, and poor biodegradability of these compounds limit their large-scale application. Deep eutectic solvents (DESs) were recently considered a new type of IL with additional advantages in terms of cost, environmental impact, and synthesis. DESs based on choline salts (i.e., choline-based DESs) are promising candidates for CO2 separation. In this work, the microstructures, physicochemical properties, and water effect of choline-based DESs are surveyed and compared with those of conventional ILs. The properties of choline-based DESs are similar to those of conventional ILs, but research on the latter remains limited. Further study on the microstructures, properties, and separation performance of choline-based DESs considering dynamic factors must be carried out through experimental measurements and model development. Thermodynamic analysis based on Gibbs free energy change is conducted to investigate the performances of choline-based-DESs during CO2 separation from biogas. Choline-based-DESs are screened on the basis of energy use and amount of absorbent needed. The performances of the screened choline-based-DESs are further compared with those of conventional ILs screened in our previous work, as well as commercial CO2 absorbents. Comparisons indicate that the screened DES-based absorbents show great application potential due to their nonvolatility, low energy use, or low amount required. The performances of physical choline-based-DES and 30 wt% MEA for CO2 separation from other gas streams (e.g., flue gas, lime kiln gas, and bio-syngas) are discussed. Considering the high amounts of physical absorbents required to enable separation, further study with techno-economic analysis needs to be carried out.

[1]  S. Aparicio,et al.  Water effect on CO2 absorption for hydroxylammonium based ionic liquids: A molecular dynamics study , 2012 .

[2]  V. Constantin,et al.  Physical and Electrochemical Properties of 2-hydroxy-ethyl-trimethyl Ammonium Chloride Based Ionic Liquids as Potential Electrolytes for Metals Electrodeposition , 2011 .

[3]  David L Davies,et al.  Ionic liquid analogues formed from hydrated metal salts. , 2004, Chemistry.

[4]  Xiaoyan Ji,et al.  Modeling the Viscosity of Ionic Liquids with the Electrolyte Perturbed-Chain Statistical Association Fluid Theory , 2014 .

[5]  C. Chiappe,et al.  Ionic green solvents from renewable resources , 2007 .

[6]  J. Coutinho,et al.  High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate , 2013 .

[7]  Y. Danten,et al.  Interaction of water highly diluted in 1-alkyl-3-methyl imidazolium ionic liquids with the PF6(-) and BF4(-) anions. , 2009, The journal of physical chemistry. A.

[8]  M. Hashim,et al.  Potential applications of deep eutectic solvents in nanotechnology: Part II , 2015, Chemical Engineering Journal.

[9]  J. Coutinho,et al.  Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS , 2014 .

[10]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[11]  Meng-Hui Li,et al.  High-pressure volumetric properties of choline chloride–ethylene glycol based deep eutectic solvent and its mixtures with water , 2012 .

[12]  B. Han,et al.  Solubility of CO2 in a Choline Chloride + Urea Eutectic Mixture , 2008 .

[13]  W. Su,et al.  Effect of Water on Solubility of Carbon Dioxide in (Aminomethanamide + 2-Hydroxy-N,N,N-trimethylethanaminium Chloride) , 2009 .

[14]  M. A. Bustam,et al.  Solubility of CO2 in pyridinium based ionic liquids , 2012 .

[15]  F. Endres,et al.  Air and water stable ionic liquids in physical chemistry. , 2006, Physical chemistry chemical physics : PCCP.

[16]  L. Glasser,et al.  Standard absolute entropies, S°298, from volume or density: Part II. Organic liquids and solids , 2004 .

[17]  Paul Scovazzo,et al.  Gas Solubilities in Room-Temperature Ionic Liquids , 2004 .

[18]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[19]  V. Taghikhani,et al.  Investigation on the solubility of SO2 and CO2 in imidazolium-based ionic liquids using NPT Monte Carlo simulation. , 2011, The journal of physical chemistry. B.

[20]  Xuezhong He,et al.  Physical Properties of Ionic Liquids: Database and Evaluation , 2006 .

[21]  A. A. Koroteev,et al.  Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages , 2015 .

[22]  Hui Jin,et al.  Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. , 2008, The journal of physical chemistry. B.

[23]  Jian Sun,et al.  The recent development of CO2 fixation and conversion by ionic liquid , 2011 .

[24]  Matthew D. Green,et al.  Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies , 2009 .

[25]  M. A. Bustam,et al.  Unique Structure and Solute -Solvent Interaction in Imidazolium Based Ionic Liquids: A Review , 2011 .

[26]  Xiangping Zhang,et al.  Density Prediction of Mixtures of Ionic Liquids and Molecular Solvents Using Two New Generalized Models , 2014 .

[27]  M. Shiflett,et al.  Phase behavior of {carbon dioxide + [bmim][Ac]} mixtures , 2008 .

[28]  F. Mjalli,et al.  Viscosity model for choline chloride‐based deep eutectic solvents , 2015 .

[29]  Meng-Hui Li,et al.  High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T =(298.15 to 323.15)K and up to 50MPa , 2012 .

[30]  J. Torrecilla,et al.  Density and Molar Volume Predictions Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design , 2007 .

[31]  R. W. Berg Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids , 2007 .

[32]  Kazuhiko Matsumoto,et al.  Structural characteristics of alkylimidazolium-based salts containing fluoroanions , 2007 .

[33]  P. Villeneuve,et al.  Deep eutectic solvents: Synthesis, application, and focus on lipase‐catalyzed reactions , 2013 .

[34]  Mert Atilhan,et al.  A theoretical study on mitigation of CO2 through advanced deep eutectic solvents , 2015 .

[35]  Marina Cvjetko Bubalo,et al.  Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. , 2015, Ecotoxicology and environmental safety.

[36]  G. Sadowski,et al.  Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components , 2014 .

[37]  F. Gharagheizi,et al.  Group contribution model for estimation of surface tension of ionic liquids , 2012 .

[38]  Farhad Gharagheizi,et al.  Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids , 2014 .

[39]  L. V. Woodcock,et al.  Corresponding States Theory for the Freezing of Ionic Liquids , 2011 .

[40]  Lynn F. Gladden,et al.  Glycerol eutectics as sustainable solvent systems , 2010 .

[41]  F. Gharagheizi,et al.  Prediction of surface tension of ionic liquids by molecular approach , 2013 .

[42]  S. Alavi,et al.  Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids. , 2011, Physical Chemistry, Chemical Physics - PCCP.

[43]  W. Shi,et al.  Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle. , 2014, The journal of physical chemistry. B.

[44]  David L Davies,et al.  Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. , 2005, Inorganic chemistry.

[45]  A. Bakkar,et al.  Electrodeposition onto magnesium in air and water stable ionic liquids: From corrosion to successful plating , 2007 .

[46]  C. Stevens,et al.  Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. , 2013, Chemical Society reviews.

[47]  L. Glasser,et al.  Lattice and phase transition thermodynamics of ionic liquids , 2004 .

[48]  Waheed Afzal,et al.  Solubilities of some gases in four immidazolium-based ionic liquids , 2013 .

[49]  Raymond K. Rasheed,et al.  Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. , 2001, Chemical communications.

[50]  W. Shi,et al.  Molecular simulation and regular solution theory modeling of pure and mixed gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2008, The journal of physical chemistry. B.

[51]  F. Mjalli,et al.  Effect of water on the thermo-physical properties of Reline: An experimental and molecular simulation based approach. , 2014, Physical chemistry chemical physics : PCCP.

[52]  K. Edler,et al.  Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[53]  G. Pazuki,et al.  Modeling of surface tension for ionic liquids using group method of data handling , 2015, Ionics.

[54]  M. Watanabe,et al.  Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. , 2005, The journal of physical chemistry. B.

[55]  S. Raeissi,et al.  Two simple correlations to predict viscosities of pure and aqueous solutions of ionic liquids , 2015 .

[56]  N. Matubayasi,et al.  Energetic contributions from the cation and anion to the stability of carbon dioxide dissolved in imidazolium-based ionic liquids. , 2015, The journal of physical chemistry. B.

[57]  Shuangyue Liu,et al.  Carbon dioxide capture by amino-functionalized ionic liquids: DFT based theoretical analysis substantiated by FT-IR investigation , 2016 .

[58]  A. Pádua,et al.  Molecular solutes in ionic liquids: a structural perspective. , 2007, Accounts of chemical research.

[59]  Cinzia Chiappe,et al.  QSPR correlation for conductivities and viscosities of low‐temperature melting ionic liquids , 2008 .

[60]  Solubility of CO2 in amide-based Brønsted acidic ionic liquids , 2013 .

[61]  Mert Atilhan,et al.  Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation , 2010 .

[62]  Geoffrey W. Stevens,et al.  Experiments and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Three Different Deep Eutectic Solvents (DESs) , 2015 .

[63]  Yan Li,et al.  Theoretical study on the structures and properties of mixtures of urea and choline chloride , 2013, Journal of Molecular Modeling.

[64]  Jason E. Bara,et al.  What chemicals will we need to capture CO2 , 2012 .

[65]  Y. Choi,et al.  Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. , 2015, Food chemistry.

[66]  Coray M. Colina,et al.  Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents , 2014 .

[67]  David Rooney,et al.  Development of a QSPR correlation for the parachor of 1,3-dialkyl imidazolium based ionic liquids , 2009 .

[68]  Wei Wang,et al.  UNIFAC model for ionic liquid-CO2 systems , 2014 .

[69]  A. Yokozeki,et al.  Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4] , 2005 .

[70]  J. A. Lazzús,et al.  A group contribution method to estimate the viscosity of ionic liquids at different temperatures , 2015 .

[71]  Zhigang Lei,et al.  Gas solubility in ionic liquids. , 2014, Chemical reviews.

[72]  Lydie Viau,et al.  Ionogels, ionic liquid based hybrid materials. , 2011, Chemical Society reviews.

[73]  E. Maginn,et al.  A Monte Carlo Simulation Study To Predict the Solubility of Carbon Dioxide, Hydrogen, and Their Mixture in the Ionic Liquids 1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim+][Tf2N–], n = 4, 6) , 2015 .

[74]  Y. Jing,et al.  Physical–chemical properties of nickel analogs ionic liquid based on choline chloride , 2014, Journal of Thermal Analysis and Calorimetry.

[75]  Sayee Prasaad Balaji,et al.  Solubility of the Precombustion Gases CO2, CH4, CO, H2, N2, and H2S in the Ionic Liquid [bmim][Tf2N] from Monte Carlo Simulations , 2014 .

[76]  K. R. Harris,et al.  Temperature and pressure dependence of the electrical conductivity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate , 2007 .

[77]  Maaike C. Kroon,et al.  Deep eutectic solvents for highly efficient separations in oil and gas industries , 2017 .

[78]  K. Row,et al.  Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. , 2015, Journal of separation science.

[79]  Meng-Hui Li,et al.  Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K , 2012 .

[80]  Joan F. Brennecke,et al.  Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[81]  José O. Valderrama,et al.  Prediction of the heat capacity of ionic liquids using the mass connectivity index and a group contribution method , 2011 .

[82]  Buxing Han,et al.  Efficient SO2 absorption by renewable choline chloride–glycerol deep eutectic solvents , 2013 .

[83]  Hua Zhao,et al.  Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review , 2013 .

[84]  Xiaoyan Ji,et al.  Modeling the density of ionic liquids with ePC-SAFT , 2016 .

[85]  Burkhard König,et al.  Low melting mixtures in organic synthesis – an alternative to ionic liquids? , 2012 .

[86]  S. Stolte,et al.  Biologische Abbaubarkeit von ionischen Flüssigkeiten – Testverfahren und strukturelles Design , 2011 .

[87]  Xiaoyan Ji,et al.  Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids , 2012, Science China Chemistry.

[88]  V. Srinivasadesikan,et al.  On the Chemical Stabilities of Ionic Liquids , 2009, Molecules.

[89]  K. M. Gupta,et al.  Systematic Investigation of Nitrile Based Ionic Liquids for CO2 Capture: A Combination of Molecular Simulation and ab Initio Calculation , 2014 .

[90]  B. Pollet,et al.  Sono-electrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents , 2008 .

[91]  G. Saito,et al.  Ionic liquids formed with polycyano 1,1,3,3-tetracyanoallyl anions: substituent effects of anions on liquid properties. , 2009, The journal of physical chemistry. B.

[92]  S. Pandey,et al.  Densities and Viscosities of (Choline Chloride + Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K , 2014 .

[93]  R. Sedev Surface tension, interfacial tension and contact angles of ionic liquids , 2011 .

[94]  D. Gutiérrez-Tauste,et al.  CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods , 2013 .

[95]  Mohd Ali Hashim,et al.  Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction , 2013 .

[96]  François Jérôme,et al.  Deep eutectic solvents: syntheses, properties and applications. , 2012, Chemical Society reviews.

[97]  J. Fareleira,et al.  Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids , 2013 .

[98]  Yang Kun,et al.  Effects of water and ethanol on the electrical conductivity of caprolactam tetrabutyl ammonium halide ionic liquids , 2013 .

[99]  Xiaoyan Ji,et al.  Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents. , 2017, ChemSusChem.

[100]  A. Klamt,et al.  COSMO-RS as a tool for property prediction of IL mixtures—A review , 2010 .

[101]  Li Xu,et al.  Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone , 2015 .

[102]  F. Srienc,et al.  Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis , 2010, Biotechnology and bioprocess engineering : BBE.

[103]  Emma Lloyd Raven,et al.  Extraction of glycerol from biodiesel into a eutectic based ionic liquid , 2007 .

[104]  Paul Scovazzo,et al.  Solubility, Diffusivity, and Permeability of Gases in Phosphonium-Based Room Temperature Ionic Liquids: Data and Correlations , 2007 .

[105]  M. Khraisheh,et al.  A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches. , 2015, Physical chemistry chemical physics : PCCP.

[106]  L. M. Varela,et al.  Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids , 2007 .

[107]  S. G. Raju,et al.  Molecular dynamics simulation of model room temperature ionic liquids with divalent anions , 2010 .

[108]  Jacek Namieśnik,et al.  Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review , 2015, Environmental Science and Pollution Research.

[109]  E. Karakatsani,et al.  Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state. , 2006, The journal of physical chemistry. B.

[110]  J. Coutinho,et al.  Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. , 2014, Ecotoxicology and environmental safety.

[111]  Meng-Hui Li,et al.  Molar heat capacity of four aqueous ionic liquid mixtures , 2011 .

[112]  C. Margulis,et al.  Ionic liquids: structure and photochemical reactions. , 2011, Annual review of physical chemistry.

[113]  Mert Atilhan,et al.  Gas Solubility and Rheological Behavior of Natural Deep Eutectic Solvents (NADES) via Combined Experimental and Molecular Simulation Techniques , 2017 .

[114]  Gary T. Rochelle,et al.  CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine , 1991 .

[115]  T. Makino,et al.  Electrical Conductivities, Viscosities, and Densities of N-Acetoxyethyl-N,N-dimethyl-N-ethylammonium and N,N-Dimethyl-N-ethyl-N-methoxyethoxyethylammonium Bis(trifluoromethanesulfonyl)amide and Their Nonfunctionalized Analogues , 2013 .

[116]  M. Gomes,et al.  Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids , 2013 .

[117]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6] , 2006 .

[118]  R. Singer,et al.  Ionic Liquids: The Neglected Issues , 2005 .

[119]  A. Abbott,et al.  Electrolytic processing of superalloy aerospace castings using choline chloride-based ionic liquids , 2012 .

[120]  E. Beckman,et al.  A challenge for green chemistry: designing molecules that readily dissolve in carbon dioxide. , 2004, Chemical communications.

[121]  Mert Atilhan,et al.  Interfacial Properties of Deep Eutectic Solvents Regarding to CO2 Capture , 2015 .

[122]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[123]  Meng-Hui Li,et al.  Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions , 2013 .

[124]  刘青山,et al.  四种深共融溶剂的性质:密度、电导率、动力粘度及折光率 , 2015 .

[125]  C. Ye,et al.  Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. , 2007, The journal of physical chemistry. A.

[126]  Xiaoyan Ji,et al.  Thermodynamic modeling of ionic liquid density with heterosegmented statistical associating fluid theory , 2009 .

[127]  A. Henni,et al.  Ionic liquids for CO2 capture using COSMO-RS: Effect of structure, properties and molecular interactions on solubility and selectivity , 2011 .

[128]  M. C. Kroon,et al.  Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. , 2013, Angewandte Chemie.

[129]  Mohd Tariq,et al.  Volatility of Aprotic Ionic Liquids — A Review , 2010 .

[130]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[131]  B. Han,et al.  Structures and Thermodynamic Properties of Ionic Liquids , 2014 .

[132]  J. Troncoso,et al.  Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water , 2009 .

[133]  Yingjie Xu Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures , 2013 .

[134]  J. Coutinho,et al.  Applying a QSPR correlation to the prediction of surface tensions of ionic liquids , 2008 .

[135]  M. Fayer Dynamics and structure of room temperature ionic liquids , 2014 .

[136]  Yu-feng Hu,et al.  The molecular characteristics dominating the solubility of gases in ionic liquids. , 2011, Chemical Society reviews.

[137]  Xiaoyan Ji,et al.  Modeling thermodynamic derivative properties of ionic liquids with ePC-SAFT , 2015 .

[138]  Andrea G. Bishop,et al.  Ion diffusion in molten salt mixtures , 2000 .

[139]  Feliu Maseras,et al.  DFT modeling of reactivity in an ionic liquid: How many ion pairs? , 2008, J. Comput. Chem..

[140]  B. Han,et al.  Switching the basicity of ionic liquids by CO2 , 2008 .

[141]  João A. P. Coutinho,et al.  Group Contribution Methods for the Prediction of Thermophysical and Transport Properties of Ionic Liquids , 2009 .

[142]  H. Ohno,et al.  Amino acid ionic liquids. , 2007, Accounts of chemical research.

[143]  A. Abbott,et al.  Electroplating Using Ionic Liquids , 2013 .

[144]  Edward J Maginn,et al.  Atomistic simulation of the thermodynamic and transport properties of ionic liquids. , 2007, Accounts of chemical research.

[145]  Xiaoyan Ji,et al.  Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory , 2010 .

[146]  Geert-Jan Witkamp,et al.  Natural deep eutectic solvents as new potential media for green technology. , 2013, Analytica chimica acta.

[147]  S. Pang,et al.  Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[148]  Saeid Baroutian,et al.  Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques , 2012 .

[149]  David Shan-Hill Wong,et al.  Densities of a deep eutectic solvent based on choline chloride and glycerol and its aqueous mixtures at elevated pressures , 2012 .

[150]  Orlando Acevedo,et al.  Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids. , 2009, Journal of chemical theory and computation.

[151]  S. Pereda,et al.  Modeling gas solubilities in imidazolium based ionic liquids with the [Tf2N] anion using the GC-EoS , 2016 .

[152]  J. Prausnitz,et al.  Solubilities of Small Hydrocarbons in Tetrabutylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate and in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide , 2013 .

[153]  B. Han,et al.  Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters , 2008 .

[154]  Farouq S. Mjalli,et al.  Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng-Robinson equation of state , 2014 .

[155]  A. Queimada,et al.  Solubilities of hydrofluorocarbons in ionic liquids: experimental and modelling study , 2014 .

[156]  Ana Rodríguez,et al.  Study of thermodynamic and transport properties of phosphonium-based ionic liquids , 2013 .

[157]  P. Scovazzo,et al.  Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data , 2009 .

[158]  Zaira Maugeri,et al.  Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. , 2011, Current opinion in chemical biology.

[159]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[160]  Raymond K. Rasheed,et al.  Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. , 2004, Journal of the American Chemical Society.

[161]  V. H. Alvarez,et al.  Thermodynamic Modeling of vapor-liquid Equilibrium of Binary Systems Ionic Liquid + Supercritical {CO2 or CHF3} and Ionic Liquid + Hydrocarbons Using Peng-Robinson Equation of State , 2008 .

[162]  Luhong Zhang,et al.  Ether-Functionalized Ionic Liquids with Low Viscosity for Efficient SO2 Capture , 2013 .

[163]  J. Dupont From molten salts to ionic liquids: a "nano" journey. , 2011, Accounts of chemical research.

[164]  Q. Wang,et al.  Predicting the surface tensions of ionic liquids by the quantitative structure property relationship method using a topological index , 2013 .

[165]  Yizhak Marcus,et al.  Gas solubilities in deep eutectic solvents , 2018, Monatshefte für Chemie - Chemical Monthly.

[166]  David L Davies,et al.  Novel solvent properties of choline chloride/urea mixtures. , 2003, Chemical communications.

[167]  Meng-Hui Li,et al.  Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids , 2009 .

[168]  Julia Klingele Low-melting complexes with cationic side chains – Phosphonium-, ammonium- and imidazolium-tagged coordination compounds , 2015 .

[169]  B. Han,et al.  Reversible capture of SO2 through functionalized ionic liquids. , 2013, ChemSusChem.

[170]  Mert Atilhan,et al.  Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications , 2015 .

[171]  Hua Zhao Current Studies on Some Physical Properties of Ionic Liquids , 2004 .

[172]  Yingying Zhang,et al.  Screening of conventional ionic liquids for carbon dioxide capture and separation , 2016 .

[173]  Changquan Calvin Sun,et al.  Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. , 2009, International journal of pharmaceutics.

[174]  M. Gomes,et al.  Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate , 2006 .

[175]  Xiangping Zhang,et al.  Electrodeposition in Ionic Liquids. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[176]  Meng-Hui Li,et al.  Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water , 2012 .

[177]  Pablo Domínguez de María,et al.  Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols , 2012 .

[178]  Mei-zhen Lu,et al.  Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride , 2015 .

[179]  J. Brennecke,et al.  Phase Equilibria of Gases and Liquids with 1-n-butyl-3-Methylimidazolium Tetrafluoroborate , 2003 .

[180]  Surya Moganty,et al.  Regular Solution Theory for Low Pressure Carbon Dioxide Solubility in Room Temperature Ionic Liquids: Ionic Liquid Solubility Parameter from Activation Energy of Viscosity , 2010 .

[181]  Diego A. Alonso,et al.  Deep Eutectic Solvents: The Organic Reaction Medium of the Century , 2016 .

[182]  Xiaomin Liu,et al.  Ionic Liquids and Relative Process Design , 2009 .

[183]  Solidification of Ionic Liquids: Theory and Techniques , 2010 .

[184]  S. Raeissi,et al.  Densities and volumetric properties of (choline chloride + urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15–323.15 K , 2018, The Journal of Chemical Thermodynamics.

[185]  S. Alavi,et al.  Molecular dynamics simulations of equilibrium and transport properties of amino acid-based room temperature ionic liquids. , 2009, The journal of physical chemistry. B.

[186]  A. Indarto,et al.  H2S–CO2 Separation Using Room Temperature Ionic Liquid [BMIM][Br] , 2014 .

[187]  H. -. Wang,et al.  A high correlate and simplified QSPR for viscosity of imidazolium-based ionic liquids , 2013 .

[188]  Kamil Paduszynski,et al.  Viscosity of Ionic Liquids: An Extensive Database and a New Group Contribution Model Based on a Feed-Forward Artificial Neural Network , 2014, J. Chem. Inf. Model..

[189]  F. Sha,et al.  Absorption, desorption and spectroscopic investigation of sulfur dioxide in the binary system ethylene glycol + dimethyl sulfoxide , 2015 .

[190]  J. Jacquemin,et al.  Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX , 2009 .

[191]  Wen Yu,et al.  Molecular Dynamics Simulation for the Binary Mixtures of High Pressure Carbon Dioxide and Ionic Liquids , 2014 .

[192]  Yingying Zhang,et al.  Thermodynamic analysis of CO2 separation from biogas with conventional ionic liquids , 2018 .

[193]  Dinh Quan Nguyen,et al.  Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids , 2009 .

[194]  S. Saha,et al.  Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. , 2007, Accounts of chemical research.

[195]  M. Hashim,et al.  Glycerol-based deep eutectic solvents: Physical properties , 2013 .

[196]  Suojiang Zhang,et al.  Solubilities of Gases in 1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures , 2006 .

[197]  G. Voth,et al.  Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. , 2007, Accounts of chemical research.

[198]  A. Abbott,et al.  Application of hole theory to define ionic liquids by their transport properties. , 2007, The journal of physical chemistry. B.

[199]  J. Liao,et al.  Eutectic mixture of choline chloride/urea as a green solvent in synthesis of a coordination polymer: [Zn(O3PCH2CO2)] · NH4 , 2005 .

[200]  R. Noble,et al.  Regular Solution Theory and CO2 Gas Solubility in Room-Temperature Ionic Liquids , 2004 .

[201]  Y. Shan,et al.  Novel binary eutectic mixtures based on imidazole , 2008 .

[202]  Oana Croitoru,et al.  Effect of Temperature on the Physico-chemical Properties of Three Ionic Liquids Containing Choline Chloride , 2010 .

[203]  S. Wulf,et al.  Electrodeposition of iron films from an ionic liquid (ChCl/urea/FeCl3 deep eutectic mixtures) , 2009 .

[204]  G. Qu,et al.  SO2 Absorption/Desorption Characteristics of Two Novel Phosphate Ionic Liquids , 2013 .

[205]  J. Coutinho,et al.  The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities , 2011 .

[206]  Matthew D. Green,et al.  Meta-analysis of ionic liquid literature and toxicology. , 2016, Chemosphere.

[207]  Kaveh Shahbaz,et al.  Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues , 2014 .

[208]  S. Lawes,et al.  Lubrication of Steel/Steel Contacts by Choline Chloride Ionic Liquids , 2010 .

[209]  Zhaoxu Wang,et al.  Insight into Capture of Greenhouse Gas (CO2) based on Guanidinium Ionic Liquids , 2014 .

[210]  Renpan Deng,et al.  Reversible absorption of SO2 by amino acid aqueous solutions. , 2012, Journal of hazardous materials.

[211]  P. Scammells,et al.  Biodegradable ionic liquids Part II. Effect of the anion and toxicology , 2005 .

[212]  Gianni Cardini,et al.  Glycerol condensed phases Part II.A molecular dynamics study of the conformational structure and hydrogen bonding , 1999 .

[213]  Byung-chul Lee,et al.  Measurement of CO 2 Solubility in Ionic Liquids: [BMP][TfO] and [P14,6,6,6][Tf 2 N] by Measuring Bubble-Point Pressure , 2010 .

[214]  F. Zhou,et al.  Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption , 2015 .

[215]  R. Bogel-Łukasik,et al.  Isothermal vapour-liquid equilibria in the binary and ternary systems consisting of an ionic liquid, 1-propanol and CO2 , 2010 .

[216]  J. Prausnitz,et al.  Solubilities in Ionic Liquids and Molten Salts from a Simple Perturbed-Hard-Sphere Theory , 2006 .

[217]  Bo-Geng Li,et al.  Preparation and CO2 Sorption/Desorption of N-(3-Aminopropyl)Aminoethyl Tributylphosphonium Amino Acid Salt Ionic Liquids Supported into Porous Silica Particles , 2012 .

[218]  M. Shiflett,et al.  Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. , 2007, The journal of physical chemistry. B.

[219]  Jianji Wang,et al.  Aggregation in Systems of Ionic Liquids , 2014 .

[220]  F. Bresme,et al.  Surface tension of the restrictive primitive model for ionic liquids. , 2003, Physical review letters.

[221]  M. Klähn,et al.  What Determines CO₂ Solubility in Ionic Liquids? A Molecular Simulation Study. , 2015, The journal of physical chemistry. B.

[222]  D. Wong,et al.  Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies , 2012 .

[223]  Xiaoyan Ji,et al.  Energy consumption analysis for CO2 separation from gas mixtures , 2014 .

[224]  David Rooney,et al.  Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure , 2008 .

[225]  Gary A. Baker,et al.  Deep eutectic solvents: sustainable media for nanoscale and functional materials. , 2014, Accounts of chemical research.

[226]  J. Rimsza,et al.  Adsorption complexes of copper and copper oxide in the deep eutectic solvent 2:1 urea–choline chloride , 2012 .

[227]  Mohammad Ali Ahmadi,et al.  Estimation of H2S solubility in ionic liquids using a rigorous method , 2014 .

[228]  Byung-chul Lee,et al.  Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide , 2006 .

[229]  Robin D. Rogers,et al.  Ionic liquids : industrial applications for green chemistry , 2002 .

[230]  D. Deng,et al.  Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents , 2014 .

[231]  Ruth Pachter,et al.  Prediction of Melting Points for Ionic Liquids , 2005 .

[232]  Maaike C. Kroon,et al.  New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing , 2012 .

[233]  Višnja Gaurina Srček,et al.  A brief overview of the potential environmental hazards of ionic liquids. , 2014, Ecotoxicology and environmental safety.

[234]  L. Rebelo,et al.  Ionic liquids: a pathway to environmental acceptability. , 2011, Chemical Society reviews.

[235]  D. Deng,et al.  Solubilities of Carbon Dioxide in Eutectic Mixtures of Choline Chloride and Dihydric Alcohols , 2014 .

[236]  M. Anouti,et al.  Transport properties of protic ionic liquids, pure and in aqueous solutions: Effects of the anion and cation structure , 2010 .

[237]  A. Abbott,et al.  Design of improved deep eutectic solvents using hole theory. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[238]  Juan A. Lazzús,et al.  Estimation of Density as a Function of Temperature and Pressure for Imidazolium-Based Ionic Liquids Using a Multilayer Net with Particle Swarm Optimization , 2009 .

[239]  I. Polishuk Modeling of Viscosities in Extended Pressure Range Using SAFT + Cubic EoS and Modified Yarranton–Satyro Correlation , 2012 .

[240]  Emma L. Smith,et al.  Deep eutectic solvents (DESs) and the metal finishing industry: where are they now? , 2013 .

[241]  C. Lafuente,et al.  Study of the conductivity behavior of pyridinium-based ionic liquids , 2010 .

[242]  C. Glorieux,et al.  Temperature dependence of the electrical conductivity of imidazolium ionic liquids. , 2008, The Journal of chemical physics.

[243]  Meng-Hui Li,et al.  Diffusivity, Density and Viscosity of Aqueous Solutions of Choline Chloride/Ethylene Glycol and Choline Chloride/Malonic Acid , 2012 .

[244]  G. Baker,et al.  Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. , 2012, Chemical Society reviews.

[245]  R. Atkin,et al.  Structure and nanostructure in ionic liquids. , 2015, Chemical reviews.

[246]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[247]  Ralf Ludwig,et al.  Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[248]  G. Patey,et al.  The influence of water on the structural and transport properties of model ionic liquids. , 2010, The Journal of chemical physics.

[249]  Anion effects on interfacial absorption of gases in ionic liquids. A molecular dynamics study. , 2011, The journal of physical chemistry. B.

[250]  Hyunjoon Lee,et al.  Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts. , 2015, Journal of hazardous materials.

[251]  M. Shiflett,et al.  Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6] , 2010 .

[252]  Catarina Florindo,et al.  Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids , 2014 .

[253]  Meng-Hui Li,et al.  Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures , 2013 .

[254]  Mohd Ali Hashim,et al.  Prediction of deep eutectic solvents densities at different temperatures , 2011 .

[255]  D. van der Spoel,et al.  Insights on the solubility of CO2 in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide from the microscopic point of view. , 2013, Environmental science & technology.

[256]  Yingying Zhang,et al.  Thermodynamic Study for Gas Absorption in Choline-2-pyrrolidine-carboxylic Acid + Polyethylene Glycol , 2016 .

[257]  Sona Raeissi,et al.  A general viscosity model for deep eutectic solvents: The free volume theory coupled with association equations of state , 2017, Fluid Phase Equilibria.

[258]  Xiangping Zhang,et al.  Solubilities of gases in novel alcamines ionic liquid 2- 2-hydroxyethyl (methyl) amino ethanol chloride , 2011 .

[259]  Katharina Wendler,et al.  Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[260]  Feridun Esmaeilzadeh,et al.  Solubility prediction of CO2, CH4, H2, CO and N2 in Choline Chloride/Urea as a eutectic solvent using NRTL and COSMO-RS models , 2017 .

[261]  K. R. Harris,et al.  Effect of pressure on the transport properties of ionic liquids: 1-alkyl-3-methylimidazolium salts. , 2008, The journal of physical chemistry. B.

[262]  Meng-Hui Li,et al.  Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent , 2013 .

[263]  D. Mecerreyes,et al.  Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges , 2015 .

[264]  Joan F Brennecke,et al.  Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. , 2007, Accounts of chemical research.

[265]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[266]  M. H. Chakrabarti,et al.  Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems , 2013 .

[267]  Y. Jing,et al.  Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate , 2014, Journal of Molecular Modeling.

[268]  T. Makino,et al.  Electrical Conductivities, Viscosities, and Densities of N-Methoxymethyl- and N-Butyl-N-methylpyrrolidinium Ionic Liquids with the Bis(fluorosulfonyl)amide Anion , 2012 .

[269]  J. Jacquemin,et al.  Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion , 2007 .

[270]  John S. Wilkes,et al.  Thermochemistry of ionic liquid heat-transfer fluids , 2005 .

[271]  I. Alnashef,et al.  Potential applications of deep eutectic solvents in natural gas sweetening for CO2 capture , 2017 .

[272]  Jianji Wang,et al.  Solubilities of CO2, H2, N2 and O2 in ionic liquid 1-n-butyl-3-methylimidazolium heptafluorobutyrate , 2013 .

[273]  A. Abbott,et al.  Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride , 2006 .

[274]  Honglai Liu,et al.  Description of the pVT behavior of ionic liquids and the solubility of gases in ionic liquids using an equation of state , 2006 .

[275]  M. Zong,et al.  Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica , 2015 .

[276]  J. Abildskov,et al.  Solubilities of gases in ionic liquids using a corresponding-states approach to Kirkwood-Buff solution theory , 2011 .

[277]  M. Gomes,et al.  Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion , 2009 .

[278]  H. Ohno Functional design of ionic liquids , 2006 .

[279]  M. Hoffmann,et al.  Comparing Composition- and Temperature-Dependent Viscosities of Binary Systems Involving Ionic Liquids , 2015 .

[280]  N. Gathergood,et al.  Biodegradation studies of ionic liquids. , 2010, Chemical Society reviews.

[281]  Meng-Hui Li,et al.  Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: measurements and correlations , 2010 .

[282]  K. Row,et al.  Recent developments in deep eutectic solvents in chemical sciences , 2013, Monatshefte für Chemie - Chemical Monthly.

[283]  M. Hashim,et al.  Triethylene glycol based deep eutectic solvents and their physical properties , 2015 .

[284]  O. Borodin,et al.  Molecular dynamics simulation studies of the influence of imidazolium structure on the properties of imidazolium/azide ionic liquids. , 2012, The Journal of chemical physics.

[285]  Chul-Woong Cho,et al.  Environmental fate and toxicity of ionic liquids: a review. , 2010, Water research.

[286]  Robin D. Rogers,et al.  Ionic liquids as green solvents : progress and prospects , 2003 .

[287]  O. Borodin Polarizable force field development and molecular dynamics simulations of ionic liquids. , 2009, The journal of physical chemistry. B.

[288]  M. Gutiérrez,et al.  Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses. , 2014, ChemSusChem.

[289]  Meng-Hui Li,et al.  Solubility of carbon dioxide in aqueous mixtures of (reline + monoethanolamine) at T = (313.2 to 353.2) K , 2014 .

[290]  Emma L. Smith,et al.  Deep eutectic solvents (DESs) and their applications. , 2014, Chemical reviews.

[291]  J. Lehmann,et al.  The influence of hydrogen bonding on the physical properties of ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[292]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[293]  Xiaojing Wang,et al.  A review on the transport properties of ionic liquids , 2014 .

[294]  A. Haghtalab,et al.  High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate , 2015 .

[295]  M. Prud’homme Global nitrogen fertilizer supply and demand outlook , 2005, Science in China Series C: Life Sciences.

[296]  W. Shi,et al.  Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2010, The journal of physical chemistry. B.

[297]  A. Pensado,et al.  Absorption of carbon dioxide, nitrous oxide, ethane and nitrogen by 1-alkyl-3-methylimidazolium (C(n)mim, n = 2,4,6) tris(pentafluoroethyl)trifluorophosphate ionic liquids (eFAP). , 2012, The journal of physical chemistry. B.

[298]  E. Maginn,et al.  Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO2 and CH4 in the Ionic Liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2015 .

[299]  Rui L. Reis,et al.  Natural Deep Eutectic Solvents – Solvents for the 21st Century , 2014 .

[300]  C. Glorieux,et al.  Influence of the anion on the electrical conductivity and glass formation of 1-butyl-3-methylimidazolium ionic liquids. , 2010, The Journal of chemical physics.

[301]  Pei-ming Wang,et al.  Modeling chemical equilibria, phase behavior, and transport properties in ionic liquid systems , 2011 .

[302]  S. Handy Deep Eutectic Solvents in Organic Synthesis , 2015 .

[303]  M. Mousazadeh,et al.  Corresponding states theory for the prediction of surface tension of ionic liquids , 2011 .

[304]  Reversible absorption of SO2 from simulated flue gas by aqueous calcium lactate solution , 2015 .

[305]  B. Saramago,et al.  Surface tension of ionic liquids and ionic liquid solutions. , 2012, Chemical Society reviews.

[306]  Dongbing Zhao,et al.  Toxicity of Ionic Liquids , 2007 .

[307]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[308]  Polina V. Oliferenko,et al.  Prediction of gas solubilities in ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[309]  F. Mjalli,et al.  Prediction of the surface tension of deep eutectic solvents , 2012 .

[310]  D. Wong,et al.  Deep Eutectic Solvent-based Ionic Liquid Electrolytes for Electrical Double-layer Capacitors , 2012 .

[311]  Long Pang,et al.  Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. , 2015, Environmental science & technology.

[312]  Maaike C. Kroon,et al.  A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid : characterization as solvent for CO2 capture , 2013 .

[313]  Weize Wu,et al.  Formation of Deep Eutectic Solvents by Phenols and Choline Chloride and Their Physical Properties , 2013 .

[314]  G. Patey,et al.  Structural and dynamical properties of ionic liquids: The influence of charge location. , 2009, The Journal of chemical physics.

[315]  J. F. Pereira,et al.  Mixing ionic liquids – “simple mixtures” or “double salts”? , 2014 .

[316]  María de los Ángeles Fernández,et al.  Natural designer solvents for greening analytical chemistry , 2016 .

[317]  Weize Wu,et al.  Solubilities and thermodynamic properties of SO2 in ionic liquids. , 2011, The journal of physical chemistry. B.

[318]  S. Pandey,et al.  Densities and dynamic viscosities of (choline chloride + glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15) K , 2014 .

[319]  Y. Jing,et al.  Ionic liquid analogous formed from magnesium chloride hexahydrate and its physico-chemical properties , 2011 .

[320]  I. Alnashef,et al.  Are deep eutectic solvents benign or toxic? , 2013, Chemosphere.

[321]  Meng-Hui Li,et al.  Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems , 2014 .

[322]  Qingling Liu,et al.  Density, dynamic viscosity, and electrical conductivity of two hydrophobic functionalized ionic liquids , 2015 .

[323]  Fredric Bauer,et al.  Biogas upgrading – technology overview, comparison and perspectives for the future , 2013 .

[324]  J. Kang,et al.  Solubility of mixed gases containing carbon dioxide in ionic liquids: Measurements and predictions , 2007 .

[325]  S. Aparicio,et al.  Interfacial Properties of Double Salt Ionic Liquids: A Molecular Dynamics Study , 2015 .

[326]  P. D. D. María Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. , 2014 .

[327]  C. Margulis,et al.  Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. , 2007, Accounts of chemical research.