Finding visual concepts by web image mining

We propose measuring "visualness" of concepts with images on the Web, that is, what extent concepts have visual characteristics. This is a new application of "Web image mining". To know which concept has visually discriminative power is important for image recognition, since not all concepts are related to visual contents. Mining image data on the Web with our method enables it. Our method performs probabilistic region selection for images and computes an entropy measure which represents "visualness" of concepts. In the experiments, we collected about forty thousand images from the Web for 150 concepts. We examined which concepts are suitable for annotation of image contents.