A Fast Method for Linear Waves Based on Geometrical Optics
暂无分享,去创建一个
[1] Laurent Demanet,et al. Wave atoms and time upscaling of wave equations , 2009, Numerische Mathematik.
[2] L. Hörmander,et al. Fourier integral operators. II , 1972 .
[3] Randolph E. Bank,et al. An optimal order process for solving finite element equations , 1981 .
[4] Hart F. Smith. A Hardy space for Fourier integral operators , 1998 .
[5] L. Hörmander. Fourier integral operators. I , 1995 .
[6] Christiaan C. Stolk,et al. On the modeling and inversion of seismic data , 2000 .
[7] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[8] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[9] Randall J. LeVeque,et al. Convergence of a large time step generalization of Godunov's method for conservation laws , 1984 .
[10] Stanley Osher,et al. Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..
[11] Y. Egorov,et al. Fourier Integral Operators , 1994 .
[12] François Treves,et al. Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .
[13] Laurent Demanet,et al. Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..
[14] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[15] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[16] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[17] C. Micchelli,et al. Using the refinement equation for evaluating integrals of wavelets , 1993 .
[18] Michael Taylor,et al. Reflection of singularities of solutions to systems of differential equations , 1975 .
[19] M. Czubak,et al. PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.
[20] G. Beylkin,et al. Wave propagation using bases for bandlimited functions , 2005 .
[21] Gary Cohen. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[22] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .