Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[3] Richard Bellman,et al. Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.
[4] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[5] M. Hestenes. Multiplier and gradient methods , 1969 .
[6] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[7] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[8] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[9] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[10] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[11] H. Weinert. Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .
[12] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[13] P. Souganidis,et al. Differential Games and Representation Formulas for Solutions of Hamilton-Jacobi-Isaacs Equations. , 1983 .
[14] P. Lions,et al. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .
[15] J. Aubin,et al. Existence of Solutions to Differential Inclusions , 1984 .
[16] T. Stephenson. Image analysis , 1992, Nature.
[17] D. Bertsekas. Network Flows and Monotropic Optimization (R. T. Rockafellar) , 1985 .
[18] P. Lions,et al. Hopf formula and multitime Hamilton-Jacobi equations , 1986 .
[19] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[20] H. Ishi. Representation of solutions of Hamilton-Jacobi equations , 1988 .
[21] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[22] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[23] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[24] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[25] J. Tsitsiklis,et al. Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[26] Gerhard Winkler,et al. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.
[27] W. Fleming. Deterministic nonlinear filtering , 1997 .
[28] S. Osher,et al. THE WULFF SHAPE AS THE ASYMPTOTIC LIMIT OF A GROWING CRYSTALLINE INTERFACE , 1997 .
[29] Marc Teboulle,et al. Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..
[30] R. Nowak,et al. Bayesian wavelet-based signal estimation using non-informative priors , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).
[31] Chi-Wang Shu,et al. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[32] Stanley Osher,et al. Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..
[33] Chi-Wang Shu,et al. High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..
[34] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[35] Ian M. Mitchell,et al. Overapproximating Reachable Sets by Hamilton-Jacobi Projections , 2003, J. Sci. Comput..
[36] I. Dolcetta. Representations of Solutions of Hamilton-Jacobi Equations , 2003 .
[37] Sean R Eddy,et al. What is dynamic programming? , 2004, Nature Biotechnology.
[38] William M. McEneaney,et al. Max-plus methods for nonlinear control and estimation , 2005 .
[39] Alexandre M. Bayen,et al. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.
[40] Wang Hai-bing,et al. High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .
[41] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[42] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[43] Marianne Akian,et al. Max-Plus Algebra , 2006 .
[44] Patrick L. Combettes,et al. Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..
[45] Li-Tien Cheng,et al. Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..
[46] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[47] Mingqiang Zhu,et al. An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .
[48] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[49] Antonin Chambolle,et al. On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.
[50] Florent Cadoux. Optimisation et analyse convexe pour la dynamique non-régulière , 2009 .
[51] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[52] R. Newcomb. VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .
[53] Adam M. Oberman,et al. Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation , 2011 .
[54] Wotao Yin,et al. Error Forgetting of Bregman Iteration , 2013, J. Sci. Comput..
[55] Pravin Varaiya,et al. Dynamics and Control of Trajectory Tubes , 2014 .
[56] Alexander B. Kurzhanski. Dynamics and control of trajectory tubes. Theory and computation , 2014, 2014 20th International Workshop on Beam Dynamics and Optimization (BDO).
[57] Richard Bellman,et al. Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.
[58] Jérôme Darbon,et al. On Convex Finite-Dimensional Variational Methods in Imaging Sciences and Hamilton-Jacobi Equations , 2015, SIAM J. Imaging Sci..