Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere

It is well known that time-dependent Hamilton–Jacobi–Isaacs partial differential equations (HJ PDEs) play an important role in analyzing continuous dynamic games and control theory problems. An important tool for such problems when they involve geometric motion is the level set method (Osher and Sethian in J Comput Phys 79(1):12–49, 1988). This was first used for reachability problems in Mitchell et al. (IEEE Trans Autom Control 50(171):947–957, 2005) and Mitchell and Tomlin (J Sci Comput 19(1–3):323–346, 2003). The cost of these algorithms and, in fact, all PDE numerical approximations is exponential in the space dimension and time. In Darbon (SIAM J Imaging Sci 8(4):2268–2293, 2015), some connections between HJ PDE and convex optimization in many dimensions are presented. In this work, we propose and test methods for solving a large class of the HJ PDE relevant to optimal control problems without the use of grids or numerical approximations. Rather we use the classical Hopf formulas for solving initial value problems for HJ PDE (Hopf in J Math Mech 14:951–973, 1965). We have noticed that if the Hamiltonian is convex and positively homogeneous of degree one (which the latter is for all geometrically based level set motion and control and differential game problems) that very fast methods exist to solve the resulting optimization problem. This is very much related to fast methods for solving problems in compressive sensing, based on $$\ell _1$$ℓ1 optimization (Goldstein and Osher in SIAM J Imaging Sci 2(2):323–343, 2009; Yin et al. in SIAM J Imaging Sci 1(1):143–168, 2008). We seem to obtain methods which are polynomial in the dimension. Our algorithm is very fast, requires very low memory and is totally parallelizable. We can evaluate the solution and its gradient in very high dimensions at $$10^{-4}$$10-4–$$10^{-8}$$10-8 s per evaluation on a laptop. We carefully explain how to compute numerically the optimal control from the numerical solution of the associated initial valued HJ PDE for a class of optimal control problems. We show that our algorithms compute all the quantities we need to obtain easily the controller. In addition, as a step often needed in this procedure, we have developed a new and equally fast way to find, in very high dimensions, the closest point y lying in the union of a finite number of compact convex sets $$\Omega $$Ω to any point x exterior to the $$\Omega $$Ω. We can also compute the distance to these sets much faster than Dijkstra type “fast methods,” e.g., Dijkstra (Numer Math 1:269–271, 1959). The term “curse of dimensionality” was coined by Bellman (Adaptive control processes, a guided tour. Princeton University Press, Princeton, 1961; Dynamic programming. Princeton University Press, Princeton, 1957), when considering problems in dynamic optimization.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[4]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[5]  M. Hestenes Multiplier and gradient methods , 1969 .

[6]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[7]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[8]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[9]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[10]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[11]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[12]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[13]  P. Souganidis,et al.  Differential Games and Representation Formulas for Solutions of Hamilton-Jacobi-Isaacs Equations. , 1983 .

[14]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[15]  J. Aubin,et al.  Existence of Solutions to Differential Inclusions , 1984 .

[16]  T. Stephenson Image analysis , 1992, Nature.

[17]  D. Bertsekas Network Flows and Monotropic Optimization (R. T. Rockafellar) , 1985 .

[18]  P. Lions,et al.  Hopf formula and multitime Hamilton-Jacobi equations , 1986 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  H. Ishi Representation of solutions of Hamilton-Jacobi equations , 1988 .

[21]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[22]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[23]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[24]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[25]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[26]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[27]  W. Fleming Deterministic nonlinear filtering , 1997 .

[28]  S. Osher,et al.  THE WULFF SHAPE AS THE ASYMPTOTIC LIMIT OF A GROWING CRYSTALLINE INTERFACE , 1997 .

[29]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[30]  R. Nowak,et al.  Bayesian wavelet-based signal estimation using non-informative priors , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[31]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[32]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[33]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[34]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[35]  Ian M. Mitchell,et al.  Overapproximating Reachable Sets by Hamilton-Jacobi Projections , 2003, J. Sci. Comput..

[36]  I. Dolcetta Representations of Solutions of Hamilton-Jacobi Equations , 2003 .

[37]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[38]  William M. McEneaney,et al.  Max-plus methods for nonlinear control and estimation , 2005 .

[39]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[40]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[41]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[42]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[43]  Marianne Akian,et al.  Max-Plus Algebra , 2006 .

[44]  Patrick L. Combettes,et al.  Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..

[45]  Li-Tien Cheng,et al.  Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..

[46]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[47]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[48]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[49]  Antonin Chambolle,et al.  On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.

[50]  Florent Cadoux Optimisation et analyse convexe pour la dynamique non-régulière , 2009 .

[51]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[52]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[53]  Adam M. Oberman,et al.  Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation , 2011 .

[54]  Wotao Yin,et al.  Error Forgetting of Bregman Iteration , 2013, J. Sci. Comput..

[55]  Pravin Varaiya,et al.  Dynamics and Control of Trajectory Tubes , 2014 .

[56]  Alexander B. Kurzhanski Dynamics and control of trajectory tubes. Theory and computation , 2014, 2014 20th International Workshop on Beam Dynamics and Optimization (BDO).

[57]  Richard Bellman,et al.  Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.

[58]  Jérôme Darbon,et al.  On Convex Finite-Dimensional Variational Methods in Imaging Sciences and Hamilton-Jacobi Equations , 2015, SIAM J. Imaging Sci..