A Rapid, Small-Scale Method for Improving Fermentation Medium Performance

i Acknowledgments iii List of Figures vi List of Tables vii Chapter One: Introduction 1 1.1 Motivation 1 1.2 Objectives 3 1.3 Approach 4 1.4 Overview of the Thesis 4 Chapter Two: Literature Review 6 2.1 Fermentation Technology 6 2.1.1 Aspects of Submerged Culture 6 2.1.2 Types of Bioreactors 7 2.1.3 Operating Modes for Submerged Bioreactors 11 2.2 Fermentation Medium 12 2.2.1 General Review 12 2.2.2 Medium Components 12 2.2.3 Complex Medium 14 2.2.4 Defined Medium 14 2.3 Developing Fermentation Medium 16 2.3.1 Medium Formulation 16 2.3.2 Media Development 17 2.3.3 Experimental Design 18 2.3.4 Optimization Techniques 19 2.3.5 Box-Behnken Design 21 2.4 Metabolite Production Pathway 23 2.4.1 Primary Metabolites 23 2.4.2 Secondary Metabolites 24 2.4.3 Inoculum in Secondary Metabolites 26 2.4.4 Streptomyces hygroscopicus Growth Conditions 28 2.4.5 Rapamycin and the Rapamycin Biosynthetic Pathway 29 2.5 Microtitre Plate 31 2.5.

[1]  A. Mcintosh,et al.  SIZE OF INOCULUM AND CARBON METABOLISM IN SOME ASPERGILLUS SPECIES. , 1963, Journal of general microbiology.

[2]  Wouter A. Duetz,et al.  Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions , 2004 .

[3]  S. Ōmura,et al.  Ammonium Ion-Depressed Fermentation of Tylosin by the Use of a Natural Zeolite and Its Significance in the Study of Biosynthetic Regulation of the Antibiotic , 1983 .

[4]  A. Demain,et al.  Carbon Catabolite Regulation of Cephalosporin Production in Streptomyces clavuligerus , 1978, Antimicrobial Agents and Chemotherapy.

[5]  A. Demain,et al.  Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus , 1997, Journal of Industrial Microbiology and Biotechnology.

[6]  E. Katz,et al.  Development of a Chemically Defined Medium for the Synthesis of Actinomycin D by Streptomyces parvulus , 1977, Antimicrobial Agents and Chemotherapy.

[7]  Y. Abdel-Fattah,et al.  Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs , 2005 .

[8]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[9]  K. Reynolds RAPAMYCIN, FK506, AND ASCOMYCIN-RELATED COMPOUNDS , 1997 .

[10]  Sergio Luis Costa Ferreira,et al.  Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry , 2005 .

[11]  David M. Levine,et al.  Basic Business Statistics , 1979 .

[12]  Amélia Martins Delgado,et al.  Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration , 2005 .

[13]  C. Cooney,et al.  Fermentation and Enzyme Technology , 1979 .

[14]  E. R. El-Helow,et al.  Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. , 2007, Bioresource technology.

[15]  M. Kennedy,et al.  The kinetics of developing fermentation media , 1994 .

[16]  S. Braun,et al.  Mycelial morphology and metabolite production , 1991 .

[17]  Henry J. Fastert,et al.  Fermentation Exhaust Gas Analysis Using Mass Spectrometry , 1985, Bio/Technology.

[18]  S. Warr,et al.  Seed stage development for improved fermentation performance: Increased milbemycin production byStreptomyces hygroscopicus , 1996, Journal of Industrial Microbiology.

[19]  James E. Bailey,et al.  Streptomycetes in micro-cultures: Growth, production of secondary metabolites, and storage and retrieval in the 96–well format , 2000, Antonie van Leeuwenhoek.

[20]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[21]  A. Demain,et al.  Incorporation of acetate, propionate, and methionine into rapamycin by Streptomyces hygroscopicus. , 1991, Journal of natural products.

[22]  A. Demain,et al.  Phosphate, ammonium, magnesium and iron nutrition ofStreptomyces hygroscopicus with respect to rapamycin biosynthesis , 1995, Journal of Industrial Microbiology.

[23]  C. Schaffner,et al.  Studies on candicidin biogenesis. , 1972, The Journal of antibiotics.

[24]  T. Satyanarayana,et al.  A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. , 2006, Bioresource technology.

[25]  S. J. Pirt,et al.  Principles of microbe and cell cultivation , 1975 .

[26]  K. Basak,et al.  Utilization of Carbon and Nitrogen Sources by Streptomyces kanamyceticus for Kanamycin Production , 1973, Antimicrobial Agents and Chemotherapy.

[27]  A. Demain,et al.  Preferential production of rapamycin vs prolylrapamycin by Streptomyces hygroscopicus , 1998, Journal of Industrial Microbiology and Biotechnology.

[28]  A. Miller,et al.  Accumulation of Streptomycin-Phosphate in Cultures of Streptomycin Producers Grown on a High-Phosphate Medium , 1970, Journal of bacteriology.

[29]  B. Witholt,et al.  Effectiveness of orbital shaking for the aeration of suspended bacterial cultures in square-deepwell microtiter plates. , 2001, Biochemical engineering journal.

[30]  Zhaoxin Lu,et al.  Screening the Main Factors Affecting Extraction of the Antimicrobial Substance from Bacillus sp. fmbJ using the Plackett–Burman Method , 2005 .

[31]  J F Martin,et al.  Control of antibiotic biosynthesis. , 1980, Microbiological reviews.

[32]  S. Sehgal,et al.  Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. , 1975, The Journal of antibiotics.

[33]  L. M. Harvey,et al.  Fermentation:A Practical Approach , 2007 .

[34]  Ferda Mavituna,et al.  Biochemical engineering and biotechnology handbook , 1982 .

[35]  B. Buckland,et al.  Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. , 2003, Biotechnology and bioengineering.

[36]  A. Demain,et al.  Biochemistry and regulation of streptomycin and mannosidostreptomycinase (alpha-D-mannosidase) formation. , 1970, Bacteriological reviews.

[37]  S. Sehgal,et al.  Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization.:II. FERMENTATION, ISOLATION AND CHARACTERIZATION , 1975 .

[38]  H. El-Enshasy,et al.  Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis , 2000, Journal of basic microbiology.

[39]  D. Al Biochemistry of penicillin and cephalosporin fermentations. , 1974 .

[40]  A. Demain,et al.  Effect of amino acids on rapamycin biosynthesis by Streptomyces hygroscopicus , 1995, Applied Microbiology and Biotechnology.

[41]  M Kennedy,et al.  Strategies for improving fermentation medium performance: a review , 1999, Journal of Industrial Microbiology and Biotechnology.

[42]  A. Demain HOW DO ANTIBIOTIC‐PRODUCING MICROORGANISMS AVOID SUICIDE? * , 1974, Annals of the New York Academy of Sciences.

[43]  T. Ocain,et al.  Rapamycin: A novel immunosuppressive macrolide , 1994, Medicinal research reviews.

[44]  B. Buckland,et al.  Fermentation Development and Process Improvement , 1989 .

[45]  M. Macka,et al.  The use of the Box-Behnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation. , 2002, Journal of pharmaceutical and biomedical analysis.

[46]  Robert Hermann,et al.  Methods for Intense Aeration, Growth, Storage, and Replication of Bacterial Strains in Microtiter Plates , 2000, Applied and Environmental Microbiology.

[47]  D. Roy,et al.  Optimization of galacto-oligosaccharide production by Bifidobacterium infantis RW-8120 using response surface methodology , 2002, Journal of Industrial Microbiology and Biotechnology.

[48]  C. T. Calam,et al.  Variations in inocula and their influence on the productivity of antibiotic fermentations , 1980, Biotechnology Letters.

[49]  Mahmoud M. Berekaa,et al.  Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements , 2005, Applied Microbiology and Biotechnology.

[50]  K. Kiviharju,et al.  Optimization of Streptomyces peucetius var. caesius N47 cultivation and ε-rhodomycinone production using experimental designs and response surface methods , 2004, Journal of Industrial Microbiology and Biotechnology.

[51]  E. Carasek,et al.  Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box–Behnken design ☆ , 2007 .

[52]  I. Maddox,et al.  The effect of some culture maintenance and inoculum development techniques on solvent production by Clostridium acetobutylicum , 1987 .

[53]  C. Bacon,et al.  Production of fusaric acid by Fusarium species , 1996, Applied and environmental microbiology.

[54]  M. Chartrain,et al.  Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus , 2004, Applied Microbiology and Biotechnology.

[55]  N. O. Sjolander,et al.  Production of tetracycline by Streptomyces aureofaciens in synthetic media. , 1960, Applied microbiology.

[56]  G. Lancini,et al.  Biotechnology of Antibiotics and Other Bioactive Microbial Metabolites , 1993, Springer US.

[57]  G. Payne,et al.  Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media , 1983, Applied and environmental microbiology.

[58]  Zhinan Xu,et al.  A High-Throughput Method for Screening of Rapamycin-Producing Strains of Streptomyces hygroscopicus by Cultivation in 96-Well Microtiter Plates , 2005, Biotechnology Letters.

[59]  A. Demain,et al.  Carbon source nutrition of rapamycin biosynthesis inStreptomyces hygroscopicus , 1995, Journal of Industrial Microbiology.

[60]  W. Fan,et al.  New process control strategy used in a rapamycin fermentation , 1999 .

[61]  J. Moreno,et al.  Influence of the physiological state of the inoculum on fermentation of musts from Pedro Ximénez grapes by Saccharomyces cerevisiae. , 1991, Microbios.

[62]  Maksimova Ea,et al.  Effect of the growth conditions for the inoculum on cephalosporin biosynthesis , 1982 .

[63]  Y. Chisti,et al.  Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. , 2005, Journal of biotechnology.

[64]  V. Gesheva,et al.  Effects of nutrients on the production of AK-111-81 macrolide antibiotic by Streptomyces hygroscopicus. , 2005, Microbiological research.

[65]  B. Law,et al.  Rapamycin: an anti-cancer immunosuppressant? , 2005, Critical reviews in oncology/hematology.

[66]  Ghasem D. Najafpour,et al.  Biochemical engineering and biotechnology , 2006 .