Computational framework for Launch, Ascent, and Vehicle Aerodynamics (LAVA)

Abstract The Launch Ascent and Vehicle Aerodynamics (LAVA) framework, developed at NASA Ames Research Center, is introduced. This technology originated from addressing some of the key challenges that were present during the re-design of the launch infrastructure at Kennedy Space Center. The solver combines Computational Fluid Dynamics (CFD) capabilities with auxiliary modules, such as Conjugate Heat Transfer (CHT) and Computational Aero-Acoustics (CAA). LAVA is designed to be grid agnostic, i.e., it can handle block-structured Cartesian, generalized curvilinear overset and unstructured polyhedral grids either as stand-alone mode or by coupling different grid types through an overset interface. A description of the spatial discretizations utilized for each grid type, along with the available explicit and implicit time-stepping schemes, is provided. The overset grid coupling procedure for Cartesian and unstructured mesh types, as well as the CHT and CAA capabilities is discussed in some detail. Several NASA mission related applications are also presented to demonstrate the capabilities for large-scale applications, such as pressure, thermal and acoustic analyses of the geometrically complex launch environment, steady and unsteady ascent aerodynamics, plume-induced flow separation analyses of heavy lift launch vehicles and aeroacoustic applications. In addition, two validation cases related to NASA aeronautics applications are presented: the 1st AIAA Sonic Boom Prediction Workshop test cases and a computational study of slat noise.

[1]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[2]  Hermann F. Fasel,et al.  Numerical investigation of transition delay in a Mach 6 boundary layer using porous walls , 2013 .

[3]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[4]  Hermann F. Fasel,et al.  A locally stabilized immersed boundary method for the compressible Navier-Stokes equations , 2015, J. Comput. Phys..

[5]  Taku Nonomura,et al.  Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids , 2010 .

[6]  Jeffrey A. Housman,et al.  A comparison of higher-order finite-difference shock capturing schemes , 2015 .

[7]  Karen A. Deere,et al.  USM3D Simulations of Saturn V Plume-Induced Flow Separation , 2011 .

[8]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[9]  P. Colella,et al.  A fourth-order accurate local refinement method for Poisson's equation , 2005 .

[10]  P. Spalart,et al.  A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities , 2008 .

[11]  William M. Chan,et al.  Developments in Strategies and Software Tools for Overset Structured Grid Generation and Connectivity , 2011 .

[12]  Phillip Colella,et al.  A Fourth-Order Accurate Finite-Volume Method with Structured Adaptive Mesh Refinement for Solving the Advection-Diffusion Equation , 2012, SIAM J. Sci. Comput..

[13]  Rupak Biswas,et al.  Parallel Adaptive High-Order CFD Simulations Characterizing Cavity Acoustics for the Complete SOFIA Aircraft , 2014 .

[14]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[15]  Joe F. Thompson,et al.  Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies , 1974 .

[16]  Reynaldo J. Gomez Best Practices in Overset Grid Generation , 2002 .

[17]  Nikolaus A. Adams,et al.  Scale separation for implicit large eddy simulation , 2011, J. Comput. Phys..

[18]  P. Spalart,et al.  Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests , 2005 .

[19]  S. Deck Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation , 2012 .

[20]  Shayan Moini-Yekta,et al.  Computational and Experimental Assessment of Models for the First AIAA Sonic Boom Prediction Workshop , 2014 .

[21]  Oh-Hyun Rho,et al.  Methods for the accurate computations of hypersonic flows: I. AUSMPW + scheme , 2001 .

[22]  Jeffrey A. Housman,et al.  Time-Derivative Preconditioning Methods for Multicomponent Flows-Part II: Two-Dimensional Applications , 2009 .

[23]  Todd White,et al.  Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1 , 2009 .

[24]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[25]  Phillip Colella,et al.  A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions , 2007, J. Comput. Phys..

[26]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[27]  Philippe R. Spalart,et al.  Towards the prediction of noise from jet engines , 2003 .

[28]  Huayong Liu,et al.  Geometric conservation law and applications to high-order finite difference schemes with stationary grids , 2011, J. Comput. Phys..

[29]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[30]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[31]  Philippe R. Spalart,et al.  An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows , 2015 .

[32]  P. Spalart Detached-Eddy Simulation , 2009 .

[33]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[34]  D. Mavriplis Three dimensional unstructured multigrid for the Euler equations , 1991 .

[35]  J. P. Mendoza,et al.  Some Effects of Wing Planform on Sonic Boom , 2013 .

[36]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[37]  Rupak Biswas,et al.  Parallel adaptive high-order CFD simulations characterising SOFIA cavity acoustics , 2016 .

[38]  Y. Burtschell,et al.  Shock wave impacts on deforming panel, an application of fluid-structure interaction , 2005 .

[39]  Jeffrey A. Housman,et al.  Space-Time Accuracy Assessment of CFD Simulations for the Launch Environment , 2011 .

[40]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[41]  C. Kiris,et al.  Gradient Calculation Methods on Arbitrary Polyhedral Unstructured Meshes for Cell-Centered CFD Solvers , 2014 .

[42]  A. Lyrintzis Surface Integral Methods in Computational Aeroacoustics—From the (CFD) Near-Field to the (Acoustic) Far-Field , 2003 .

[43]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..

[44]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[45]  J. Housman,et al.  Time -derivative preconditioning method for multicomponent flow , 2007 .

[46]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[47]  Ralf Heinrich,et al.  The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .

[48]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[49]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[50]  Kazuhiro Nakahashi,et al.  Immersed Boundary Method for Compressible Euler Equations in the Building-Cube Method , 2011 .

[51]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[52]  Edward Ma,et al.  Validation of a large scale chimera grid system for the Space Shuttle Launch Vehicle , 1994 .

[53]  Anthony Springer Experimental Investigation of Plume-Induced Flow Separation on the National Launch System 1 1/2-Stage Launch Vehicle , 1994 .

[54]  Jeffrey A. Housman,et al.  Time-Derivative Preconditioning Methods for Multicomponent Flows—Part I: Riemann Problems , 2009 .

[55]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1998 .

[56]  Shayan Moini-Yekta,et al.  Verification and Validation Studies for the LAVA CFD Solver , 2013 .

[57]  Stuart E. Rogers,et al.  PEGASUS 5: An Automated Preprocessor for Overset-Grid Computational Fluid Dynamics , 2003 .

[58]  M. Strelets Detached eddy simulation of massively separated flows , 2001 .

[59]  Pieter G. Buning,et al.  Evaluation of Two High-Order Weighted Essentially Nonoscillatory Schemes , 2008 .

[60]  Taku Nonomura,et al.  Robust explicit formulation of weighted compact nonlinear scheme , 2013 .

[61]  David P. Lockard,et al.  Assessment of Slat Noise Predictions for 30P30N High-Lift Configuration From BANC-III Workshop , 2015 .

[62]  Hermann F. Fasel,et al.  A novel concept for the design of immersed interface methods , 2013, J. Comput. Phys..

[63]  Chang-Hsien Tai,et al.  Design of optimally smoothing multistage schemes for the Euler equations , 1992 .

[64]  Phillip Colella,et al.  An adaptive cut‐cell method for environmental fluid mechanics , 2009 .

[65]  Yijun Liu,et al.  A High-Fidelity CFD/BEM Methodology For Launch Pad Acoustic Environment Prediction , 2012 .

[66]  Shigeru Obayashi,et al.  Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme , 2012, J. Comput. Phys..

[67]  P. Colella,et al.  Embedded boundary grid generation using the divergence theorem, implicit functions, and constructive solid geometry , 2008 .

[68]  Jae-Doo Lee,et al.  Adaptation of a k-epsilon Model to a C artesian Grid Based Methodology , 2009 .

[69]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[70]  C. Kiris,et al.  An Immersed Boundary Method for Solving the Compressible Navier-Stokes Equations with Fluid Structure Interaction , 2016 .

[71]  Jeffrey A. Housman,et al.  Towards jet acoustic prediction within the Launch Ascent and Vehicle Aerodynamics framework , 2013 .

[72]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[73]  Philip L. Roe,et al.  An Entropy Adjoint Approach to Mesh Refinement , 2010, SIAM J. Sci. Comput..

[74]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[75]  Marcel Vinokur,et al.  Conservation equations of gasdynamics in curvilinear coordinate systems , 1974 .

[76]  Jeffrey A. Housman,et al.  Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids , 2016 .

[77]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[78]  Neal T. Frink,et al.  Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes , 1992 .

[79]  Florence V. Hutcheson,et al.  A Comparison of the Noise Characteristics of a Conventional Slat and Krueger Flap , 2016 .

[80]  Hermann F. Fasel,et al.  Immersed Interface Method for Solving the Incompressible Navier-Stokes Equations with Moving Boundaries , 2011 .

[81]  Jeffrey A. Housman,et al.  Best Practices for CFD Simulations of Launch Vehicle Ascent with Plumes - OVERFLOW Perspective , 2011 .

[82]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[83]  Shishir A. Pandya,et al.  Automation of Structured Overset Mesh Generation for Rocket Geometries , 2009 .

[84]  Neal T. Frink,et al.  Tetrahedral Unstructured Navier-Stokes Method for Turbulent Flows , 1998 .

[86]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[87]  Philippe R. Spalart,et al.  Noise Prediction for Increasingly Complex Jets. Part II: Applications , 2005 .

[88]  Michael F. Barad,et al.  A Comparison of Higher-Order Shock Capturing Schemes Within the LAVA CFD Solver , 2014 .

[89]  Jeffrey A. Housman,et al.  Noise generation mechanisms for a supersonic jet impinging on an inclined plate , 2016, Journal of Fluid Mechanics.