Association Rule Ontology Matching Approach

This article presents a hybrid, extensional and asymmetric matching approach designed to find out relations (equivalence and subsumption) between two textual hierarchies. By using the as-sociation rule paradigm and a statistical measure, this method relies on the following idea: ``An entity A will be more specific than or equivalent to an entity B if the vocabulary used to describe A and its instances tends to be included in that of B and its instances’’. This approach is divided into two parts: (1) The representation of each entity by a set of relevant terms and data; (2) The discovery of binary association rules between entities. The selection of rules uses two criteria for assessing the implication quality and reducing redundancy. The method is evaluated on two benchmarks. The first contains two hierarchies indexing textual documents and the second one is composed of OWL ontologies.

[1]  Umberto Straccia,et al.  A Probabilistic, Logic-Based Framework for Automated Web Directory Alignment , 2006 .

[2]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[3]  William E. Winkler,et al.  The State of Record Linkage and Current Research Problems , 1999 .

[4]  Francky Trichet,et al.  Axiom‐based ontology matching , 2009, Expert Syst. J. Knowl. Eng..

[5]  Yuzhong Qu,et al.  Constructing virtual documents for ontology matching , 2006, WWW '06.

[6]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[7]  Béatrice Daille,et al.  Conceptual Structuring through Term Variations , 2003, ACL 2003.

[8]  Pedro M. Domingos,et al.  Ontology Matching: A Machine Learning Approach , 2004, Handbook on Ontologies.

[9]  Régis Gras,et al.  Using information-theoretic measures to assess association rule interestingness , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[10]  Yannis Kalfoglou,et al.  Ontology mapping: the state of the art , 2003, The Knowledge Engineering Review.

[11]  Régis Gras,et al.  Implication Intensity: From the Basic Statistical Definition to the Entropic Version , 2003 .

[12]  Yasuo Yamane,et al.  A Semantic Category Matching Approach to Ontology Alignment , 2004, EON.

[13]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[14]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[15]  Chris Clifton,et al.  SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks , 2000, Data Knowl. Eng..

[16]  Yannis Kalfoglou,et al.  CMS: CROSI Mapping System - Results of the 2005 Ontology Alignment Contest , 2005 .

[17]  Jérôme Euzenat,et al.  A Survey of Schema-Based Matching Approaches , 2005, J. Data Semant..

[18]  Silvana Castano,et al.  Matching Ontologies in Open Networked Systems: Techniques and Applications , 2006, J. Data Semant..

[19]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[20]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[21]  Jérôme Euzenat,et al.  An integrative proximity measure for ontology alignment , 2003 .

[22]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[23]  Georg Groh,et al.  Facilitating the Exchange of Explicit Knowledge through Ontology Mappings , 2001, FLAIRS.

[24]  Hussein H. Aly,et al.  Mining association rules , 2001, CATA.

[25]  Ryutaro Ichise,et al.  Discovering Relationships Among Catalogs , 2004, Discovery Science.

[26]  Mark A. Musen,et al.  Anchor-PROMPT: Using Non-Local Context for Semantic Matching , 2001, OIS@IJCAI.

[27]  Yuzhong Qu,et al.  GMO: A Graph Matching for Ontologies , 2005, Integrating Ontologies.

[28]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[29]  John F. Roddick,et al.  Association mining , 2006, CSUR.

[30]  Umberto Straccia,et al.  oMAP: Combining Classifiers for Aligning Automatically OWL Ontologies , 2005, WISE.

[31]  Fausto Giunchiglia,et al.  S-Match: an Algorithm and an Implementation of Semantic Matching , 2004, ESWS.

[32]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.