Ways to Compute in Euclidean Frameworks
暂无分享,去创建一个
[1] Masami Hagiya. Discrete State Transition Systems on Continuous Space-Time: A Theoretical Model for Amorphous Computing , 2005, UC.
[2] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[3] C. Michaux,et al. A survey on real structural complexity theory , 1997 .
[4] Jérôme Olivier Durand-Lose. Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model , 2007, CiE.
[5] Olivier Bournez. Some Bounds on the Computational Power of Piecewise Constant Derivative Systems , 1999, Theory of Computing Systems.
[6] Thomas J. Naughton,et al. An optical model of computation , 2005, Theor. Comput. Sci..
[7] Denys Duchier,et al. Computing in the Fractal Cloud: Modular Generic Solvers for SAT and Q-SAT Variants , 2012, TAMC.
[8] Thomas J. Naughton,et al. On the Computational Power of a Continuous-Space Optical Model of Computation , 2001, MCU.
[9] Olivier Bournez. Some Bounds on the Computational Power of Piecewise Constant Derivative Systems (Extended Abstract) , 1997, ICALP.
[10] M. Chapelle,et al. Geometrical Computation 8 : Small Machines , Accumulations & Rationality ∗ , 2013 .
[11] Jérôme Olivier Durand-Lose,et al. Abstract Geometrical Computation 1: Embedding Black Hole Computations with Rational Numbers , 2006, Fundam. Informaticae.
[12] Cristian Claude,et al. Information and Randomness: An Algorithmic Perspective , 1994 .
[13] Turlough Neary,et al. The complexity of small universal Turing machines: A survey , 2009, Theor. Comput. Sci..
[14] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[15] Hajnal Andréka,et al. General relativistic hypercomputing and foundation of mathematics , 2009, Natural Computing.
[16] Marian B. Pour-El,et al. An Introduction to Computable Analysis , 1989 .
[17] Jérôme Olivier Durand-Lose. The signal point of view: from cellular automata to signal machines , 2008, JAC.
[18] István Németi,et al. Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .
[19] Florent Becker,et al. Abstract Geometrical Computation 8: Small Machines, Accumulations and Rationality , 2018, J. Comput. Syst. Sci..
[20] Eans Cedex,et al. Abstract geometrical computation 4: small Turing universal signal machines , 2010 .
[21] Jérôme Olivier Durand-Lose. Abstract geometrical computation 5: embedding computable analysis , 2010, Natural Computing.
[22] Jérôme Olivier Durand-Lose. Abstract Geometrical Computation and Computable Analysis , 2009, UC.
[23] Kenichi Morita,et al. A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .
[24] Jérôme Olivier Durand-Lose,et al. Abstract Geometrical Computation for Black Hole Computation , 2004, MCU.
[25] J. Durand-Lose. Computing in Perfect Euclidean Frameworks , 2017 .
[26] Jérôme Olivier Durand-Lose. Abstract Geometrical Computation 6: A Reversible, Conservative and Rational Based Model for Black Hole Computation , 2012, Int. J. Unconv. Comput..
[27] Jérôme Olivier Durand-Lose,et al. Irrationality Is Needed to Compute with Signal Machines with Only Three Speeds , 2013, CiE.
[28] M. Hogarth. Deciding Arithmetic Using SAD Computers , 2004, The British Journal for the Philosophy of Science.
[29] Eugene Asarin,et al. Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1998, J. Comput. Syst. Sci..
[30] Charles H. Bennett. Notes on the history of reversible computation , 2000, IBM J. Res. Dev..
[31] Ulrich Huckenbeck. A Result about the Power of Geometric Oracle Machines , 1991, Theor. Comput. Sci..
[32] Jérôme Olivier Durand-Lose. Geometrical Accumulations and Computably Enumerable Real Numbers , 2011, UC.
[33] Tom Besson,et al. Exact Discretization of 3-Speed Rational Signal Machines into Cellular Automata , 2016, Automata.
[34] Olivier Bournez. Achilles and the Tortoise Climbing up the Hyper-Arithmetical Hierarchy , 1999, Theor. Comput. Sci..
[35] R. Guy,et al. The Book of Numbers , 2019, The Crimean Karaim Bible.
[36] Izumi Takeuti. Transition Systems over Continuous Time-Space , 2005, Electron. Notes Theor. Comput. Sci..
[37] Amir Pnueli,et al. Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..
[38] Matthew Cook,et al. Universality in Elementary Cellular Automata , 2004, Complex Syst..
[39] Ulrich Huckenbeck,et al. Euclidian Geometry in Terms of Automata Theory , 1989, Theor. Comput. Sci..
[40] G. Jacopini,et al. Reversible Parallel Computation: An Evolving Space-Model , 1990, Theor. Comput. Sci..
[41] Maxime Senot. Modèle géométrique de calcul : fractales et barrières de complexité. (Geometrical model of computation: fractals and complexity gaps) , 2013 .
[42] S. Smale,et al. On a theory of computation and complexity over the real numbers; np-completeness , 1989 .