Ways to Compute in Euclidean Frameworks

This tutorial presents what kind of computation can be carried out inside a Euclidean space with dedicated primitives—and discrete or hybrid (continuous evolution between discrete transitions) time scales. The presented models can perform Classical (Turing, discrete) computations as well as, for some, hyper and analog computations (thanks to the continuity of space). The first half of the tutorial presents three models of computation based on respectively: ruler and compass, local constraints and emergence of polyhedra and piece-wise constant derivative. The other half concentrates on signal machines: line segments are extended and replaced on meeting. These machines are capable hyper-computation and analog computation and to solve PSPACE-problem in “constant space and time” though partial fractal generation.

[1]  Masami Hagiya Discrete State Transition Systems on Continuous Space-Time: A Theoretical Model for Amorphous Computing , 2005, UC.

[2]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[3]  C. Michaux,et al.  A survey on real structural complexity theory , 1997 .

[4]  Jérôme Olivier Durand-Lose Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model , 2007, CiE.

[5]  Olivier Bournez Some Bounds on the Computational Power of Piecewise Constant Derivative Systems , 1999, Theory of Computing Systems.

[6]  Thomas J. Naughton,et al.  An optical model of computation , 2005, Theor. Comput. Sci..

[7]  Denys Duchier,et al.  Computing in the Fractal Cloud: Modular Generic Solvers for SAT and Q-SAT Variants , 2012, TAMC.

[8]  Thomas J. Naughton,et al.  On the Computational Power of a Continuous-Space Optical Model of Computation , 2001, MCU.

[9]  Olivier Bournez Some Bounds on the Computational Power of Piecewise Constant Derivative Systems (Extended Abstract) , 1997, ICALP.

[10]  M. Chapelle,et al.  Geometrical Computation 8 : Small Machines , Accumulations & Rationality ∗ , 2013 .

[11]  Jérôme Olivier Durand-Lose,et al.  Abstract Geometrical Computation 1: Embedding Black Hole Computations with Rational Numbers , 2006, Fundam. Informaticae.

[12]  Cristian Claude,et al.  Information and Randomness: An Algorithmic Perspective , 1994 .

[13]  Turlough Neary,et al.  The complexity of small universal Turing machines: A survey , 2009, Theor. Comput. Sci..

[14]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[15]  Hajnal Andréka,et al.  General relativistic hypercomputing and foundation of mathematics , 2009, Natural Computing.

[16]  Marian B. Pour-El,et al.  An Introduction to Computable Analysis , 1989 .

[17]  Jérôme Olivier Durand-Lose The signal point of view: from cellular automata to signal machines , 2008, JAC.

[18]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[19]  Florent Becker,et al.  Abstract Geometrical Computation 8: Small Machines, Accumulations and Rationality , 2018, J. Comput. Syst. Sci..

[20]  Eans Cedex,et al.  Abstract geometrical computation 4: small Turing universal signal machines , 2010 .

[21]  Jérôme Olivier Durand-Lose Abstract geometrical computation 5: embedding computable analysis , 2010, Natural Computing.

[22]  Jérôme Olivier Durand-Lose Abstract Geometrical Computation and Computable Analysis , 2009, UC.

[23]  Kenichi Morita,et al.  A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .

[24]  Jérôme Olivier Durand-Lose,et al.  Abstract Geometrical Computation for Black Hole Computation , 2004, MCU.

[25]  J. Durand-Lose Computing in Perfect Euclidean Frameworks , 2017 .

[26]  Jérôme Olivier Durand-Lose Abstract Geometrical Computation 6: A Reversible, Conservative and Rational Based Model for Black Hole Computation , 2012, Int. J. Unconv. Comput..

[27]  Jérôme Olivier Durand-Lose,et al.  Irrationality Is Needed to Compute with Signal Machines with Only Three Speeds , 2013, CiE.

[28]  M. Hogarth Deciding Arithmetic Using SAD Computers , 2004, The British Journal for the Philosophy of Science.

[29]  Eugene Asarin,et al.  Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1998, J. Comput. Syst. Sci..

[30]  Charles H. Bennett Notes on the history of reversible computation , 2000, IBM J. Res. Dev..

[31]  Ulrich Huckenbeck A Result about the Power of Geometric Oracle Machines , 1991, Theor. Comput. Sci..

[32]  Jérôme Olivier Durand-Lose Geometrical Accumulations and Computably Enumerable Real Numbers , 2011, UC.

[33]  Tom Besson,et al.  Exact Discretization of 3-Speed Rational Signal Machines into Cellular Automata , 2016, Automata.

[34]  Olivier Bournez Achilles and the Tortoise Climbing up the Hyper-Arithmetical Hierarchy , 1999, Theor. Comput. Sci..

[35]  R. Guy,et al.  The Book of Numbers , 2019, The Crimean Karaim Bible.

[36]  Izumi Takeuti Transition Systems over Continuous Time-Space , 2005, Electron. Notes Theor. Comput. Sci..

[37]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[38]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[39]  Ulrich Huckenbeck,et al.  Euclidian Geometry in Terms of Automata Theory , 1989, Theor. Comput. Sci..

[40]  G. Jacopini,et al.  Reversible Parallel Computation: An Evolving Space-Model , 1990, Theor. Comput. Sci..

[41]  Maxime Senot Modèle géométrique de calcul : fractales et barrières de complexité. (Geometrical model of computation: fractals and complexity gaps) , 2013 .

[42]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .