In-plane elastic buckling of hierarchical honeycomb materials

In this paper, we study the elastic buckling of a new class of honeycomb materials with hierarchical architecture, which is often observed in nature. Employing the topedown approach, the virtual buckling stresses and corresponding strains for each cell wall at level n � 1 are calculated from those at level n; then, comparing these virtual buckling stresses of all cell walls, the real local buckling stress is deduced; also, the progressive failure of the hierarchical structure is studied. Finally, parametric analyses reveal influences of some key parameters on the local buckling stress and strength-to-density ratio; meanwhile the constitutive behaviors and energy-absorption properties, with increasing hierarchy n, are calculated. The results show the possibility to tailor the elastic buckling properties at each hierarchical level, and could thus have interesting applications, e.g., in the design of multiscale energy-absorption honeycomb light materials.

[1]  Michael F. Ashby,et al.  On the mechanics of balsa and other woods , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  N. Fleck,et al.  The Through-Thickness Compressive Strength of a Composite Sandwich Panel With a Hierarchical Square Honeycomb Sandwich Core , 2009 .

[3]  Kenneth E. Evans,et al.  The effects of hierarchy on the in-plane elastic properties of honeycombs , 2011 .

[4]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[5]  Peter Fratzl,et al.  Mechanical Function of a Complex Three‐Dimensional Suture Joining the Bony Elements in the Shell of the Red‐Eared Slider Turtle , 2009 .

[6]  X. Cai Wood modifications for valued-added applications using nanotechnology-based approaches , 2007 .

[7]  M. Buehler,et al.  Mechanics of Nano-Honeycomb Silica Structures: Size-Dependent Brittle-to-Ductile Transition , 2011 .

[8]  Nicola Pugno,et al.  Mimicking nacre with super-nanotubes for producing optimized super-composites , 2006 .

[9]  S. D. Papka,et al.  In-plane compressive response and crushing of honeycomb , 1994 .

[10]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[11]  N. Pugno,et al.  A Parametrical Analysis on the Elastic Anisotropy of Woven Hierarchical Tissues , 2011 .

[12]  S. D. Papka,et al.  Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb , 1998 .

[13]  Huajian Gao,et al.  Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[14]  Mechanics of hierarchical 3-D nanofoams , 2012 .

[15]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[16]  Stelios Kyriakides,et al.  In-plane crushing of a polycarbonate honeycomb , 1998 .

[17]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[18]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[19]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[20]  Gin Boay Chai,et al.  Mechanical properties of Nomex material and Nomex honeycomb structure , 2007 .

[21]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[23]  Zhenyu Xue,et al.  Crush dynamics of square honeycomb sandwich cores , 2006 .

[24]  Göran Tolf Saint-Venant bending of an orthotropic beam , 1985 .

[25]  Michael F. Ashby,et al.  Buckling of honeycombs under in-plane biaxial stresses , 1992 .

[26]  S. Timoshenko Theory of Elastic Stability , 1936 .

[27]  H. Yao,et al.  Size-dependent heterogeneity benefits the mechanical performance of bone , 2011 .

[28]  Huajian Gao,et al.  On optimal hierarchy of load-bearing biological materials , 2011, Proceedings of the Royal Society B: Biological Sciences.

[29]  D. Raabe,et al.  Influence of Structural Principles on the Mechanics of a Biological Fiber‐Based Composite Material with Hierarchical Organization: The Exoskeleton of the Lobster Homarus americanus , 2009 .

[30]  Alberto Carpinteri,et al.  Design of micro-nanoscale bio-inspired hierarchical materials , 2008 .

[31]  A. Carpinteri,et al.  Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables. , 2008, Small.

[32]  D. Kretschmann,et al.  The Mechanical Properties of Wood , 1915 .

[33]  W. E. Warren,et al.  Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials , 1987 .

[34]  Bernard Budiansky,et al.  On the minimum weights of compression structures , 1999 .

[35]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.