Conditioning convex and nonconvex problems

Two ways of defining a well-conditioned minimization problem are introduced and related, with emphasis on the quantitative aspects. These concepts are used to study the behavior of the solution sets of minimization problems for functions with connected sublevel sets, generalizing results of Attouch-Wets in the convex case. Applications to continuity properties of subdifferentials and to projection mappings are pointed out.

[1]  H. Fédérer Geometric Measure Theory , 1969 .

[2]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[3]  Massimo Furi,et al.  About well-posed optimization problems for functionals in metric spaces , 1970 .

[4]  Israel Zang,et al.  On functions whose local minima are global , 1975 .

[5]  M. Avriel,et al.  Generalized arcwise-connected functions and characterizations of local-global minimum properties , 1980 .

[6]  C. Zălinescu On uniformly convex functions , 1983 .

[7]  H. Attouch Variational convergence for functions and operators , 1984 .

[8]  Roger J.-B. Wets,et al.  ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM , 1986 .

[9]  J. Penot Metric regularity, openness and Lipschitzian behavior of multifunctions , 1989 .

[10]  Conditionnement de problèmes : application aux statistiques , 1990 .

[11]  Gerald Beer,et al.  Conjugate convex functions and the epi-distance topology , 1990 .

[12]  Jean-Paul Penot,et al.  Inversion of real-valued functions and applications , 1990, ZOR Methods Model. Oper. Res..

[13]  Jean-Paul Penot,et al.  Operations on convergent families of sets and functions , 1990 .

[14]  Roberto Lucchetti,et al.  The topology of theρ-hausdorff distance , 1991 .

[15]  J. Penot,et al.  Topological stability results about approximate solutions of parametrized minimization problems , 1991 .

[16]  Jean-Paul Penot,et al.  The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity , 1991 .

[17]  R. Wets,et al.  Quantitative stability of variational systems. I. The epigraphical distance , 1991 .

[18]  Jean-Paul Penot,et al.  Metrically well-set minimization problems , 1992 .

[19]  Jean-Paul Penot,et al.  Topologies and convergences on the space of convex functions , 1992 .

[20]  David Minda,et al.  Uniformly convex functions , 1992 .

[21]  Philippe Michel,et al.  A generalized derivative for calm and stable functions , 1992, Differential and Integral Equations.

[22]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[23]  Roger J.-B. Wets,et al.  Quantitative Stability of Variational Systems II. A Framework for Nonlinear Conditioning , 1993, SIAM J. Optim..

[24]  Jean-Paul Penot,et al.  Preservation of persistence and stability under intersections and operations, part 1: Persistence , 1993 .

[25]  Jean-Paul Penot Miscellaneous incidences of convergence theories in optimization and nonlinear analysis I: Behavior of solutions , 1994 .

[26]  D. Azé,et al.  Lipschitz behaviour of the Legendre-Fenchel Transform , 1994 .

[27]  J. Penot,et al.  Uniformly convex and uniformly smooth convex functions , 1995 .

[28]  Nguyen Dong Yen,et al.  Holder continuity of solutions to a parametric variational inequality , 1995 .