OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION

The first gamma-ray burst (GRB) confirmed to be bright enough to be seen with the naked eye, GRB 080319B at redshift z = 0.937, allowed for exquisite follow-up observations across the electromagnetic spectrum. We present our detailed optical and infrared (IR) observations of the afterglow, consisting of over 5000 images starting 51 s after the GRB trigger, in concert with our own analysis of the Swift UVOT, Burst Alert Telescope (BAT), and XRT data. The event is extreme not only in observed properties but also intrinsically: it was the most luminous event ever recorded at optical and IR wavelengths and had an exceedingly high isotropic-equivalent energy release in γ-rays. At early times, the afterglow evolution is broadly consistent with being reverse-shock dominated, but then is subsumed by a forward shock at around 1000 s. The overall spectral energy distribution, spanning from ultraviolet through near-IR wavelengths, shows no evidence for a significant amount of dust extinction in the host frame. The afterglow evolution, however, is highly chromatic: starting at about 1000 s the index shifts blueward before shifting back to the red at late times. In our deepest late-time observations, we find tentative evidence for an optical jet break and a luminous supernova. Finally, we examine the detectability of such events with current and future facilities and find that such an event could be detected in gamma rays by BAT out to z = 10.7 (8σ), while the nominal EXIST sensitivity would allow detection to z ≈ 32. At the K band, this source would have been easily detected with meter-class telescopes to z ≈ 17.

[1]  D. A. Kann,et al.  MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT , 2010, 1009.0004.

[2]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[3]  E. O. Ofek,et al.  THE HOST GALAXIES OF SWIFT DARK GAMMA-RAY BURSTS: OBSERVATIONAL CONSTRAINTS ON HIGHLY OBSCURED AND VERY HIGH REDSHIFT GRBs , 2009, 0905.0001.

[4]  Warren R. Brown,et al.  FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITH SWIFT X-RAY TRANSIENT 080109 , 2008, 0805.2201.

[5]  W. T. Vestrand,et al.  Taxonomy of gamma‐ray burst optical light curves: identification of a salient class of early afterglows , 2008, 0803.1872.

[6]  Armin Rest,et al.  Type Ia Supernovae Are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL , 2007, 0711.2068.

[7]  B. Metzger,et al.  On the Conditions for Neutron-rich Gamma-Ray Burst Outflows , 2007, 0708.3395.

[8]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[9]  C. Blake,et al.  The Troublesome Broadband Evolution of GRB 061126: Does a Gray Burst Imply Gray Dust? , 2007, astro-ph/0703538.

[10]  Ralf Bender,et al.  Astronomical Data Analysis Software and Systems XVI ASP Conference Series , 2007 .

[11]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[12]  Nathaniel Butler,et al.  Gamma-Ray Burst Energetics in the Swift Era , 2007, 0707.4478.

[13]  J. S. Bloom,et al.  Near-Infrared Interferometric, Spectroscopic, and Photometric Monitoring of T Tauri Inner Disks , 2007, 0707.3833.

[14]  Nathaniel R. Butler,et al.  A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations , 2007, 0706.1275.

[15]  J. Grindlay,et al.  Jets, Blazars and the EBL in the GLAST-EXIST Era , 2007, 0705.4492.

[16]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[17]  Nathaniel R. Butler,et al.  X-Ray Hardness Variations as an Internal/External Shock Diagnostic , 2007 .

[18]  S. Naoz,et al.  An observational limit on the earliest gamma-ray bursts , 2007, astro-ph/0702357.

[19]  N. Butler,et al.  X-Ray Hardness Evolution in GRB Afterglows and Flares: Late-Time GRB Activity without NH Variations , 2006, astro-ph/0612564.

[20]  Charles D. Dermer,et al.  On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.

[21]  N. Masetti,et al.  The Prompt Optical/Near-Infrared Flare of GRB 050904: The Most Luminous Transient Ever Detected , 2007 .

[22]  R. McCray,et al.  Supernova 1987A : 20 years after : Supernovae and Gamma-Ray Bursters : Aspen, Colorado, 19-23 February 2007 , 2007 .

[23]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[24]  B.Zhang,et al.  Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst? , 2006, astro-ph/0611089.

[25]  Italy Universita dell'Insubria,et al.  The Remarkable Afterglow of GRB 061007: Implications for Optical Flashes and GRB Fireballs , 2006, astro-ph/0610660.

[26]  P. Schady,et al.  Dust and gas in the local environments of gamma-ray bursts , 2006, astro-ph/0702122.

[27]  E. O. Ofek,et al.  Multiwavelength Observations of GRB 050820A: An Exceptionally Energetic Event Followed from Start to Finish , 2006, astro-ph/0608183.

[28]  Boulder,et al.  The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.

[29]  Yuki Kaneko,et al.  The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts , 2006, astro-ph/0601188.

[30]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2005, astro-ph/0512575.

[31]  J. Granot,et al.  Distribution of gamma-ray burst ejecta energy with Lorentz factor , 2005, astro-ph/0511049.

[32]  J. Bloom,et al.  The Calibration of the Swift UVOT Optical Observations: A Recipe for Photometry , 2005, astro-ph/0505504.

[33]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[34]  J. X. Prochaska,et al.  GRB 050408: A Bright Gamma-Ray Burst Probing an Atypical Galactic Environment , 2005, astro-ph/0512081.

[35]  B. McLeod,et al.  Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z = 0.716 , 2005, astro-ph/0502319.

[36]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[37]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[38]  P. Mazzali,et al.  The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors , 2004, astro-ph/0403399.

[39]  K. Pedersen,et al.  Small-scale variations in the radiating surface of the GRB 011211 jet , 2004, astro-ph/0401621.

[40]  S. Klose,et al.  A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows , 2003, astro-ph/0311610.

[41]  E. O. Ofek,et al.  The Detailed Optical Light Curve of GRB 030329 , 2003, astro-ph/0312594.

[42]  F. Frontera Gamma Ray Bursts in the Afterglow Era , 2003 .

[43]  D. Frail,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[44]  K. Z. Stanek,et al.  High-Precision Photometry of the Gamma-Ray Burst GRB 020813: The Smoothest Afterglow Yet , 2003, astro-ph/0308191.

[45]  Ryan Chornock,et al.  The Katzman Automatic Imaging Telescope Gamma‐Ray Burst Alert System, and Observations of GRB 020813 , 2003, astro-ph/0305027.

[46]  D. Frail,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003, astro-ph/0302210.

[47]  C. Guidorzi,et al.  Discovery of GRB 020405 and Its Late Red Bump , 2002, astro-ph/0208008.

[48]  Zhi-Yun Li,et al.  Ambient Interaction Models for γ-Ray Burst Afterglows , 2003 .

[49]  Titus J. Galama,et al.  Supernovae and gamma-Ray Bursters , 2003 .

[50]  N. Masetti,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[51]  A. Fernández-Soto,et al.  Early afterglows as probes for the reionization epoch , 2001, astro-ph/0103307.

[52]  Joshua S. Bloom,et al.  The Prompt Energy Release of Gamma-Ray Bursts using a Cosmological k-Correction , 2001, astro-ph/0102371.

[53]  Shiho Kobayashi,et al.  Light Curves of Gamma-Ray Burst Optical Flashes , 2000, astro-ph/0009319.

[54]  Heon-Young Chang,et al.  Power Density Spectra of Gamma-Ray Burst Light Curves: Implications on Theory and Observation , 2000, astro-ph/0006051.

[55]  V. Connaughton,et al.  Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB 980923 , 1999, astro-ph/9908139.

[56]  E. Ofek,et al.  The effect of magnetic fields on γ-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999 , 1999, Nature.

[57]  R. Svensson,et al.  Self-Similar Temporal Behavior of Gamma-Ray Bursts , 1998, astro-ph/9807139.

[58]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[59]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[60]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[61]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[62]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[63]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .